AccScience Publishing / AJWEP / Volume 19 / Issue 1 / DOI: 10.3233/AJW220008
RESEARCH ARTICLE

Analysing the Changes in Water Quality of River Ganga  Passing Through Urban Cities with Remote Sensing and  GIS Support

Kamakshi Singh1 Ramakar Jha1*
Show Less
1 National Institute of Technology, Patna – 80005, India
AJWEP 2022, 19(1), 47–58; https://doi.org/10.3233/AJW220008
Submitted: 30 January 2021 | Revised: 13 August 2021 | Accepted: 13 August 2021 | Published: 19 January 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

River Ganga in India has tremendous self-purification capacity due to its dynamic, turbulent and  meandering characteristics. In addition due to the presence of anti-bacterial agents such as Bacteriophages virus  killing bacteria and its medicinal properties, the refinement capacity increases. In the present work, water quality  samples of river Ganga at Kanpur, Prayagraj, Varanasi, Patna and Bhagalpur were collected and analysed for the  years 2017-2019 to assess the change in water quality of the river Ganga in terms of total suspended solids (TSS)  and turbidity through remote sensing data and ground observations. The change in spectral reflectance of water  along the river in the visible region has been analysed using the Landsat-8 multispectral remote sensing data and  water quality samples have been collected from all the sites on the date of pass of Landsat-8 satellite. The results  obtained shows that the satellite based remote sensing approach can be effectively used to make qualitative and  quantitative estimates of total suspended solids and turbidity using nonlinear equations with high accuracy, even  in the absence of field observations.

Keywords
Remote sensing
water quality
satellite data
total suspended solids
turbidity
spectral reflectance
nonlinear models
Conflict of interest
The authors declare they have no competing interests.
References

Baban, S.M.J. (1993). Detecting water quality parameters  in the Norfolk broads, U.K., using Landsat imagery.  InternationalJournal of Remote Sensing, 14: 1247-1267.  https://doi.org/10.1080/01431169308953955

Bayley, S.E., Creed, I.F., Sass, G.Z. and A.S. Wong, (2007).  Frequent regime shifts in trophic states in shallow lakes on  the Boreal Plain: Alternative “unstable” states? Limnology  Oceanography, 52: 2002-2012. https://doi.org/10.4319/ lo.2007.52.5.2002

Bilotta, G.S. and R.E. Brazier (2008). Understanding the  influence of suspended solids on water quality and aquatic  biota. Water Research, 42: 2849-2861. DOI: 10.1016/j. watres.2008.03.018

Caballero, I., Stumpf, R.P. and A. Meredith (2019).  Preliminary assessment of turbidity and chlorophyllimpact  on bathymetry derived from Landsat-8A and Sentinel-3A  satellites in South Florida. Remote Sensing, 11(6): 645.  https://doi.org/10.3390/rs11060645

Doxaran, D., Froidefond, J.M., Lavender, S. and P. Castaing  (2002). Spectral signature of highly turbid waters  Application with SPOT data to quantify suspended  particulate matter concentrations. Remote Sensing of  Environment, 81(1): 149-161. https://doi.org/10.1016/ S0034-4257(01)00341-8

Garg, V., Senthil Kumar, A., Aggarwal, S.P., Kumar, V., Dhote,  P.R., Thakur, P.K., Nikam, B.R., Sambare, R.S., Siddiqui,  A. and P.R. Muduli (2017). Spectral similarity approach  for mapping turbidity of an inland waterbody. Journal of  Hydrology, 550: 527-537. 10.1016/j.jhydrol.2017.05.039

Gholizadeh, M.H., Melesse, A.M. and L. Reddi (2016).  A comprehensive review on water quality parameters  estimation using remote sensing techniques. Sensors.  16(8): 1298. https://doi.org/10.3390/s16081298

Geuttler, F.N., Niculescu, S. and F. Gohin (2013). Turbidity  retrieval and monitoring of Danube Delta waters using  multi-sensor optical remote sensing data: an integrated  view from the delta plain lakes to the western–northwestern  Black Sea coastal zone. Remote Sensing and Environment,  132: 86-101. 10.1016/j.rse.2013.01.009

Hicks, B.J., Stichbury, G.A., Brabyn, L.K., Allan, M.G. and  S. Ashraf (2013). Hindcasting water clarity from Landsat  satellite images of unmonitored shallow lakes in the  Waikato region, New Zealand. Environment Monitoring  Assessment, 185: 7245-7261. DOI 10.1007/s10661-013- 3098-2

Jha, R., Sharma, K.D. and V.P. Singh (2008a). Critical  appraisal of methods for the assessment of environmental  flows and their application in Two river systems of India.  KSCE Journal of Civil Engineering, 12(3): 213-219.  https://doi.org/10.1007/s12205-008-0213-y

Jha, R. and V.P. Singh (2008b). Analytical water quality  model for Biochemical Oxygen Demand simulation in  River Gomti of Ganga Basin, India. KSCE Journal of  Civil Engineering, 12(2): 141-147.  https://doi.org/10.1007/ s12205-008-0141-x

Jha, R. and V.P. Singh (2008c). Evaluation of river water  quality by entropy.KSCE Journal of Civil Engineering,  12(1): 61-69. https://doi.org/10.1007/s12205-008-8061-3

Johnson, R.W. (1975). Quantitative sediment mapping from  remotely sensed multispectral data. In: Shahrokhi F, editor.  Remote sensing of earth resources, Vol. IV. Tullahoma  (TN): The University of Tennessee Space Institute; p.  565–576.

Klemas, V., Borchardt, J.F. and W.M. Treasure (1971).  Suspended sediment observations from ERTS1. Remote  Sensing of Environment, 2: 205-221. https://doi. org/10.1016/0034-4257(71)90094-0

Kritikos, H., Yorinks, L. and H. Smith (1974). Suspended  solids analyses using ERT-A data. Remote Sensing of  Environment, 3(1): 69-78.

McCullough, I.M., Loftin, C.S. and S.A. Sader (2012).  Combining lake and watershed characteristics withLandsat TM data for remote estimation of regional lake  clarity. Remote Sensing of Environment, 123: 109-115.  DOI:10.1016/j.rse.2012.03.006

Moore, G.K. (1980). Satellite remote sensing of water  turbidity. Hydrological Sciences Journal, 25(4): 407-421.

Nelson, S.A.C., Soranno, P.A., Cheruvelil, K.S., Batzli,  S.A. and D.L. Skole (2003). Regional Assessment  of lake water clarity using satellite remote sensing.  Journal of Limnology, 62: 27-32. https://doi.org/10.4081/ jlimnol.2003.s1.27

Novo, E.M., Hansom, J.D. and P.J. Curran (1989). The effect  of sediment type on the relationship between reflectance  and suspended sediment concentration. International  Journalof Remote Sensing, 10: 1283-1289. https://doi. org/10.1080/01431168908903967

Obrador, B., Staehr, P.A. and J.P.C. Christensen (2014).  Vertical patterns of metabolism in three contrasting  stratified lakes. Limnology Oceanography, 59: 1228- 1240. https://doi.org/10.4319/lo.2014.59.4.1228

Pavelsky, T.M. and L.C. Smith (2009). Remote sensing of  suspended sediment concentration, flow velocity, and  lake recharge in the Peace-Athabasca Delta, Canada.  Water Resources Research,45(11): W11417. https://doi. org/10.1029/2008WR007424

Quang, N.H., Sasaki, J., Higa, H. and N.H. Huan (2017).  Spatiotemporal variation of turbidity based on Landsat 8  OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam.  Water, 9(8): 570. https://doi.org/10.3390/w9080570

Ritchie, J.C., McHenry, J,R., Schiebe, F.R. and R.B. Wilson  (1974). The relationship of reflected solar radiation and the  concentration of sediment in surface water of reservoirs.  In: Shahrokhi F, 1194 V. Garget al.. editor. Remote  sensing of earth resources, Vol. III. Tullahoma (TN): The  University of Tennessee Space Institute; p. 52–72.

Ritchie, J., Schiebe, F.R. and J.R. McHenry (1976). Remote  sensing of suspended sediments in surface waters.  Photogrammetry Engineering in Remote Sensing, 42(12): 1539–1545.

Rose, K.C., Greb, S.R., Diebel, M. and M.G. Turner (2017).  Annual precipitation regulates spatial and temporal drivers  of lake water clarity. Ecological Application, 27: 632- 643. DOI: 10.1002/eap.1471

Rügner, H., Schwientek, M., Beckingham, B., Kuch, B. and P.  Grathwohl (2013). Turbidity as a proxy for total suspended  solids (TSS) and particle facilitated pollutant transport in  catchments. Environmental Earth Science, 69: 373-380.  DOI:10.1007/s12665-013-2307-1

Sahoo, B.B., Jha, R., Singh, A. and D. Kumar (2019).  Application of support vector regression for modelinglow flow time series. KSCE Journal of Civil Engineering,  23(2): 923-934. https://doi.org/10.1007/s12205-018-0128-1

Schwarz, A.M. and I. Hawes (1997). Effects of changing water  clarity on characean biomass and species composition in  a large oligotrophic lake. Aquatic Botany, 56: 169-181.  https://doi.org/10.1016/S0304-3770(96)01114-X

Sebasti_a-Frasquet M.T, Aguilar-Maldonado, J.A.,  Santamarıa-Del, Angel, E. and J. Estornell (2019). Sentinel  2 analysis of turbidity patterns in a coastal lagoon. Remote  Sensing, 11(24): 2926. https://doi.org/10.3390/rs11242926

Shi, K., Li, Y., Li, L. and H. Lu (2013). Absorption  characteristics of optically complex inland waters:  Implications for water optical classification. Journal  of Geophysical Research Bio-geoscience, 118: 860- 874. https://doi.org/10.1002/jgrg.20071

Singh, K. and R. Jha (2018). Assessment of water quality in  River Ganga at Patna, India. Hydraulics, Water Resources  and Coastal Engineering: Groundwater and water quality.  Springer USA Book Volume 5. Editors: Ramakar Jha, V.  P. Singh, Vivekananad Singh, L.B. Roy and Roshni T.,p- 40-48

Singh, K. and R. Jha (2020).Water quality of river ganga  using remote sensing and GIS techniques – A review.  ASCE Conference, Kolkata India. 2-4 March 2020.

Spyrakos, E., O’Donnell, R., Hunter, P.D., Miller, C., Scott,  M., Simis, S.G.H., Neil, C., Barbosa, C.C.F., Binding, C.E.  and S. Bradt (2017). Optical types of inland and coastal  waters. Limnology Oceanography, 63: 846-870. https:// doi.org/10.1002/lno.10674

Telmer, K., Costa, M., Angélica, R.S., Araujo, E.S., and  Y. Maurice (2006). The source and fate of sediment  and mercury in the Tapajos River, Para, Brazilian  Amazon: Ground- and space-based evidence. Journal of  Environment Management, 81: 101-113. DOI: 10.1016/j. jenvman.2005.09.027

Toming, K., Kutser, T., Laas, A., Sepp, M., Paavel, B. and  T. Noges (2016). First experiences in mapping lake water  quality parameters with Landsat-8 MSI imagery. Remote  Sensing, 8(8): 640. https://doi.org/10.3390/rs8080640

Wu, G., De Leeuw, J., Skidmore, A.K., Prins, H.H.T. and  Y. Liu (2008). Comparison of MODIS and Landsat TM5  images for mapping tempo–spatial dynamics of Secchi  disk depths in Poyang Lake National Nature Reserve,  China. International Journal of Remote Sensing, 29: 2183- 2198. https://doi.org/10.3390/rs11020177

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing