AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210035
RESEARCH ARTICLE

Polyelectrolytes as a Material of Value in Water  Treatment: A Review

Shagufta Jabin1 Priti Gupta1* Mukta Sharma1
Show Less
1 Department of Chemistry, Manav Rachna Educational Institutions, Faridabad, India
AJWEP 2021, 18(3), 109–115; https://doi.org/10.3233/AJW210035
Submitted: 31 August 2020 | Revised: 29 January 2021 | Accepted: 29 January 2021 | Published: 29 July 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The use of polyelectrolytes in the treatment of water/wastewater has been studied with special emphasis on the characteristic impurities, which should be removed and the types of polyelectrolytes commonly available. Much attention is being on using polyelectrolyte as primary coagulation, their application as a coagulant aid, including the use of dual polyelectrolytes in the treatment of complex industrial wastewater. The optimum dosage of polyelectrolytes in all kinds of water and wastewater is very low when they are used as coagulant aids in conjunction with inorganic polyelectrolytes. Hence, the quantification of remaining polyelectrolytes in the water after their treatment is ruled out in this case. Polymer toxicity in aquatic animals has been assessed and the presence of residual polyelectrolytes in the treated water has been discussed. Keeping in view the applicability of these polyelectrolytes for the removal of contaminants, it is expected that this technique can be applied for further investigation in various types of water from different origins.

Keywords
Polyelectrolytes
charge neutralization
polymer bridging
toxicity
coagulation
coagulant aid
Conflict of interest
Polyelectrolytes, charge neutralization, polymer bridging, toxicity, coagulation, coagulant aid
References

Ahmad, A.L., Wong, S.S., Teng, T.T. and A. Zuhairi (2008). Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and  paper mill wastewater. Chemical Engineering Journal,  137: 510-517.

Bharti, S. and S. Mishra (2016). Synthesis, characterization  and application of polymethyl methacrylate grafted  oatmeal: A potential flocculant for wastewater treatment.  International Journal of Environmental Research, 10(1): 169-178.

Bhattarai, A. (2020). A review on polyelectrolytes (PES) and  polyelectrolyte complexes (PECs). International Journal  of Engineering and Research, V9(8). doi: 10.17577/ ijertv9is080112

Bing-hui, T., Bin, F., Xian-jia, P. and L. Zhao-kun  (2005). A cleaner two-step synthesis of high purity  diallyldimethylammonium chloride monomers for  flocculant preparation. Journal of Environmental Sciences,  17: 798-801. https://DOI 1000-0742(2005) 05-0798-04

Blanco, A., Fuente, E., Negro, C. and J. Tijero (2002).  Flocculation monitoring: Focused beam reflectance  measurement as a measurement tool. The Canadian  Journal of Chemical Engineering, 80: 1-7.

Bolto, B.J. (2007). Gregory, organic polyelectrolytes in water  treatment. Water Research, 41(11): 2301-2324. https:// DOI.org/10.1016/j.watres.2007.03.012 Bolto, B. and Z. Xie (2019).

The use of polymer in flotation  treatment of wastewater. Processes, 7(6): 374-385.  DOI: 10.3390/pr7060374

Cao, B., Gao, B., Liu, X., Wang, M. and Z. Yang (2011).  The impact of pH on floc structure characteristic of  polyferric chloride in a low DOC and high alkalinity  surface water treatment. Water Research, 45: 6181-6188.  DOI: 10.1016/j.watres.2011.09.019

Chang, E.E., Chiang, P.C., Tang, W.Y., Chao, S.H. and H.J.  Hsing (2005). Effects of polyelectrolytes on reduction  of model compounds via coagulation. Chemosphere, 58:  1141-1150.

Choong, T., Chuah, T., Robiah, Y., Gregory, K. and I. Azni  (2007). Arsenic toxicity, health hazards and removal  techniques from water: An overview. Desalination, 217: 139-166. Doi: 10.1016/j.desal.2007.01.015

Choi, J.H., Shin, W.S. and S.H. Lee (2001). Application  of synthetic polyamine flocculants for dye wastewater  treatment. Seperation Science and Technology, 36: 2945- 2968. https://doi.org/10/1081/SS-100107638

Clark, T. and T. Stephenson (1999). Development of a jar  test protocol for chemical phosphorus removal in activated  sludge using statistical experimental design. Journal of  Water Research, 33(7): 1730-1734.

Crittenden, J.C., Trussel, R.R., Hand, D.W., Howe, K.J.  and G. Tchobanoglous (2005). Coagulation, mixing and  flocculation. In: Water Treatment: Principles and Design.  John Wiley and Sons, New Jersey, pp: 643-779.

Elhakeem, M.A. and T.A. Alkhulaqi (2014). Simple, rapid  and efficient water purification by chitosan coated  magnetite nanoparticles. Journal of Environment and  Nanotechnology, 3(4): 17-20.

Goodrich, M.S., Dulak, L.H., Friedman, M.A. and J.J. Lech  (1991). Acute and long-term toxicity of water soluble  cationic polymers to rainbow-trout (Oncorhynchus  mykiss) and the modification of toxicity by humic-acid.  Environmental Toxicology and Chemistry, 10(4): 509-515.

Iakovides, I., Pantziaros, A., Zagklisa, A.D. and C. Paraskeva  (2014). Effect of polyelectrolytes on the removal of  solids and organics from olive mill wastewater. Journal  of Chemical Technology and Biotechnology, 91: 204-211.  DOI: 10.1002/jctb.4563

Ishak, S.A., Murshed, M.F., Md Akil, H., Ismail, N.,  Md Rasib, S.Z. and A. A. S. Al-Gheethi (2020). “The  application of modified natural polymers in toxicant dye  compounds wastewater: A review.” Water, 12(7): 2032.  doi: 10.3390/w12072032

Jabin, S. and J.K. Kapoor (2020). Role of polyelectrolytes in  treatment of water and wastewater I.A. Asiri, “Sustainable  Green Chemical Process and their Allied Applications”,  Springer Nature Switzerland, pp: 289-309. https://doi. org/10.1007/978-3-030-42284-4_10

Kam, S.K. and J. Gregory (2001). The interaction of humic  substances with cationic polyelectrolytes. Water Research,  35(15): 3557-3566.

Kapoor, J.K., Jabin, S. and H.S. Bhatia (2011). Evaluation  of cationic and anionic polyelectrolytes as a coagulant aid  for water quality improvement. Journal of Chemistry and  Chemical Sciences, 1(4): 267-275.

Kapoor, J.K., Jabin, S. and H.S. Bhatia (2015). Optimization  of coagulation-flocculation process for food industry  wastewater treatment using polyelectrolytes with inorganic  coagulants. Journal of Indian Chemical Society, 92: 1697-1703.

Lee, Ch. and J.C. Liu (2000). Enhanced sludge dewatering  by dual polyelectrolytes conditioning. Water Research,  34(18): 4430-4436. DOI: 10.1016/S0043-1354(00)00209-8

Lee, J.F., Liao, P.M., Tsen, D.H. and P.T. Wen (1998). Behavior  of organic polymers in drinking water purification.  Chemosphere, 37(6): 1045-1061.

Lee, W. and P. Westerhoff (2006). Dissolved organic nitrogen  removal during water treatment by aluminum sulfate and  cationic polymer coagulation. Water Research, 40(20): 3767-3774. DOI: 10.1016/j.watres.2006.08.008

Letterman, R.D. and R.W. Pero (1990). Contaminants in  polyelectrolytes used in water treatment. Journal of  American Water Works Association. doi: 10.1002/j.1551- 8833.1990.tb07056.x

Lourenço, A., Arnold, J., Gamelasa, J.A.F., Cayrec, O.J.  and M.G. Rasteiro (2017). Pre-treatment of industrial  olive oil mill effluent using low dosage health friendly  cationic polyelectrolytes. Journal of Environmental and  Chemical Engineering, 5: 6053-6060. DOI: 10.1016/j. jece.2017.11.029

Lurie, M. and M. Rebhun (1997). Effect of properties of  polyelectrolytes on their interaction with particulates  and soluble organics. Water Sciences Technology, 36(4): 93-101.

de Nardi, I.R., Fuzi, T.P. and V. del Nery (2007). Performance  evaluation and operating strategies of dissolvedair flotation system treating poultry slaughterhouse  wastewater. Resources, Conservation and Recycling, 52: 533-544.

Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and  H.M. Buchhammer (2001). Higher efficiency in the  flocculation of clay suspensions by using combinations of  oppositely charged polyelectrolytes. Colloids Surface A—  Physicochemical Engineering Aspects, 218 (1-3): 47-57.

Radoiu, M.T., Martin, D.I., Calinescu, I. and H. Iovu (2004).  Preparation of polyelectrolytes for wastewater treatment.  Journal of Hazardous Materials, 106: 27-37. DOI:  10.1016/j.jhazmat.2003.08.014

Razali, M.A.A., Ahmad, Z., Ahmad, M.S.B. and A. Ariffin  (2011) Treatment of pulp and paper mill wastewater with  various molecular weight of polyDADMAC induced  flocculation. Chemical Engineering Journal, 166: 529-535.  DOI: 10.1016/j.cej.2010.11.011

Qin, J.J., Kekre, K.A., Knops, F. and P. Miller (2006). Impact  of coagulation pH on enhanced removal of natural organic  matter in treatment of reservoir water. Separation and  Purification Technology, 49: 295-298. DOI: 10.1016/j. seppur.2005.09.016

Sarika, R., Mantzavinos, D. and N. Kalogerakis (2005).  Treatment of olive mill effluents. Part II: Complete removal  of solids by direct flocculation with polyelectrolytes.  Environment International, 31: 297-304. DOI: 10.1016/j. envint.2004.10.006

Selvapathy, P. and M.J. Reddy (1992). Effect of polyelectrolytes  on turbidity removal. Water Supply, 10(4): 175-178.

de Sena, R.F., Moreira, R.F. and H.J. José (2008). Comparison  of coagulants and coagulation aids for treatment of meat  processing wastewater by column flotation. Bioresources  and Technology, 99: 8221-8225.

Szyguła, A., Guibal, E., Palacín, M.A. Ruiz, M. and A.M.  Sastre (2009). Removal of an anionic dye (Acid Blue 92)  by coagulation–flocculation using chitosan. Journal of  Environmental Management, 90: 2979-2986.

Theodoro, J.D.P., Lenz, G.F., Zara, R.F. and R. Bergamasco  (2013). Coagulants and natural polymers: Perspectives for  the treatment of water. Plastic and Polymer Technology, 2: 55-62.

Vaughan, R.L., Reed, B.E., Roark, G.W. and D.A. Masciola  (2000). Pilot-scale investigation of chemical additiondissolved air flotation for the treatment of an oily  wastewater. Environmental Engineering and Sciences,  17: 267-277.

Yap, R.K.L., Whittaker, M., Diao, M., Stuetz, R.M., Jeerson,  B., Bulmus, V., Peirson, W.L., Nguyen, A.V. and R.K.  Henderson (2014). Hydrophobically-associated cationic  polymers as micro-bubble surface modifiers in dissolved  air flotation for cyanobacteria cell separation. Water  Research, 61: 253-262.

Wei, Y., Dong, X., Ding, A. and D. Xie (2016). Characterization  and coagulation flocculation behavior of an inorganic  polymer coagulant polyferric-zinc-sulfate. Journal of  Taiwan Institute of Chemical Engineers, 58: 351-356.  DOI: 10.1016/j.jtice.2015.06.004

Weston, D.P., Lentz, R.D., Cahn, M.D., Scott Ogle, R.,  Rothert, A.K. and M.J. Lydy (2009). Toxicity of anionic  polyacrylamide formulations when used for erosion control  in agriculture. Journal of Environmental Quality Abstract  - Surface Water Quality, 38(1): 238-243. Doi:10.2134/ jeq2008.0109

Wu, W., Palmarin, M.J. and S. Young (2018).  Poly(dimethylamine-co-epichlorohydrin) as an alternative  to alum for the demulsification of commercial dishwasher  wastewater. Seperation and Purification Technology, 195: 281-287. doi: 10.1016/j.seppur.2017.11.051

Wilts, E.M., Herzberger, J. and T.E. Long (2018). Addressing  water scarcity: Cationic polyelectrolytes in water treatment  and purification, Polymer International, doi: 10.1002/ pi.5569

Zhou, Y. and G.V. Franks (2006). Flocculation mechanism  induced by cationic polymers investigated by light  scattering. Langmuir, 22: 6775-6786.

 

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing