AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210034
RESEARCH ARTICLE

Azotobacter spp. Bioremediation Chemosate

Nibal Mousa1* Ali Adham2 Nazar Merzah3 Safa Jasim1
Show Less
1 Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq
2 Al-Nahrain Center for Strategic Studies, Baghdad, Iraq
3 Plant Protection Directorate, Ministry of Agriculture, Baghdad, Iraq
AJWEP 2021, 18(3), 103–107; https://doi.org/10.3233/AJW210034
Submitted: 4 May 2021 | Revised: 19 May 2021 | Accepted: 19 May 2021 | Published: 29 July 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Bioremediation of pesticides is the best option available to date due to its eco-friendly, cost-effective and efficacious nature. The study aimed to evaluate the Azotobacter spp. bioremediation Chemosate in the different incubation period and concentrations (5, 10, 15, 20, 25 ppm). From local sites, different microbes were isolated and Azotobacter separated using selective methods for identification of characteristics. The best result for the growth of Azotobacter sp. was at 25 ppm/0.222-0.163, in 15 days; in addition, the great degradation rate % was 25 ppm / 54.16%, observed in 2 months, while the best degradation and residues of chemosate after its digestion through MSM and HPLC residues analyses were at 25 ppm, as seen in 1-2 months, respectively. The degradation ratio % reached 81-79 % for 1-2 months. This conclusion suggests that Azotobacter spp. degradation Chemosate principles applied via hydrolysis binds phosphorus bonds with oxygen and digests the pesticides to produce nitrogen and carbon as elements for its growth sequences, especially at 2 months/25ppm.

Keywords
Azotobacter spp.
chemosate
biodegradation
Conflict of interest
The authors declare they have no competing interests.
References

Alehagen, M. (2011). Development of a method for  determination of pesticide residues in honey using liquid  chromatography-tandem mass spectrometry. Master  Thesis, Swedish University of Agricultural Sciences,  Department of Food Science, Uppsala, 42p.

Aquilantia, L., Favillib, F. and F. Clementia (2004).  Comparison of different strategies for isolation and  preliminary identification of Azotobacter from soil  samples. Soil Biology & Biochemistry, 36: 1475-1483.

Borji, A., Farivar, G.N., Johari, P., Farivar, T.N., Sepideh  Senemari, S. and G. Karimi (2014). Cleaning from the  inside: Biodegradation of organophosphate pesticides by  Pseudomonas plecoglossicida, Biotechnology and Health  Sciences, 1(1): e19193.

Chandrashekar, M.A., Supreeth, M., Soumya Pai, K.,  Ramesh, S.K.C., Geetha, N., Puttaraju, H.R. and N.S. Raju  (2017). Biodegradation of organophosphorous pesticide,  Chlorpyrifos by soil bacterium - Bacillus Megaterium Rc  88. Asian Journal of Microbiology, Biotechnology and  Environmental Sciences, 19(1): 127-133.

Collee, J.G., Duguid, J.P., Fraser, A.G. and B.P. Marmion  (1989). Practical Medical Microbiology. 3rd Ed. Mackie  and McCartney, 54-55.

Comeau, Y., Greer, C.W. and R. Samson (1993). Role of  inoculum preparation and density on the bioremediation  of 2,4-D contaminated soil by bioaugmentation. Applied  Microbiology and Biotechnology, 38: 681-687. DOI:https:// doi.org/10.1007/BF00 182810.

El-Sheikh, E.A. and M.B. Ashour (2010). Biodegradation  technology for pesticide toxicity elimination. In:  Bioremediation Technology-Recent Advances, M.H.Fulekar (Editor). Capital Publishing Company, New Delhi,  162-205. https://doi.org/10.1007 /978-90-481-3678-0_6.

Finley, S., Broadbelt, L.J. and V. Hatzimanikatis (2010). In  silico feasibility of novel biodegradation pathways for  1,2,4- 1140 Ibrahim, et al. Trichlorobenzene. BMC Systems  Biology, 24(7): 4-14. https://doi.org/10.1186/1752-0509- 4-7.

Ghassempour, A., Mohammad, A., Najafi, F. and M.  Rajabzadeh (2002). Monitoring of the pesticide diazinon  in soil, stem and surface water of rice fields. Analytical  Sciences, 18: 779-783. DOI https:// doi.org/ 10.2116/ analsci.18.779.

Ibrahim, G.A.G., Amin, M.K., Hassan, A.A. and E.A. ElSheikh (2015). Identification of pesticides degrading  bacteria isolated from Egyptian soil. Zagazig Journal of  Agricultural Research, 42(5): 1129-1143.

Islas, G., Rodriguez, J.A., Mendoza-Huizar, L.H., PérezMoreno, F. and E. Gabriela Carrillo (2014). Determination  of glyphosate and aminomethyl-phosphonic acid in  soils by HPLC with pre-column derivatization using  1,2-naphthoquinone-4-sulfonate. Journal of Liquid  Chromatography & Related Technologies, 37: 1298-1309.

Kaczyński, P. and B. Łozowicka (2015). Liquid  chromatographic determination of glyphosate and  aminomethylphosphonic acid residues in rapeseed with  MS/MS detection or derivatization/fluorescence detection. Open Chemistry, 13: 1011-1019. https://doi.org/10.1515/ chem-2015 -0107.

Karunya, S.K. and P. Saranraj (2014). Toxic effects  of pesticide pollution and its biological control by  microorganisms: A review. Applied Journal of Hygiene,  3(1): 01-10.

Mkpuma, D.U.M. and V.O.E. Simeon (2015). Isolation,  characterization and biodegradation assay of glyphosate  utilizing bacteria from exposed rice farm. Journal of  Biology, Agriculture and Healthcare, 5(5): 96-109.

Mousa, N., Ali, A. and M. Hussein (2019). Bacillus  Megaterium biodegradation glycophate. Iraqi Journal  of Agricultural Sciences, 50(6): 1674-1680. https://doi. org/10.36103/ijas.v50i6.859

Roychowdhury, D., Paul, M. and S.K. Banerjee (2017).  Isolation identification and partial characterization of  nitrogen-fixing bacteria from soil and then the production  of biofertilizer. International Journal for Research in  Applied Science & Engineering Technology (IJRASET),  5(1I): 4021-4026.

Shweta, N., Jadhav, S.K. and S. Keshavkant (2017). Bacillus  megaterium: A potential swimmer and an efficient biodegrader of an organophosphorus pesticide. International  Conference on Environmental Microbiology and Microbial  Ecology and International Conference on Ecology and  Ecosystems, 7(2): 84.

Singh, S. (2011). Selection of effective Azotobacter isolates  for tomato (Lycopersicon esculentum Mill.). Master  Thesis. Indira Gandhi Krishi Vishwavidyalaya, Raipur  (C.G.).128p.

Sørensen, S.R., Albers, C.N. and J. Aamand (2008). Rapid  mineralization of the phenylurea herbicide diuron by  Variovorax sp. strain SRS16 in pure culture and within  a two-member consortium. Applied Environmental  Microbiology, 74: 2332-2340. http://doi.org/10.128/ AEM.02687-07.

Sperber J.I. (1957). Solubilization of mineral phosphate by  soil bacteria. Nature, 180: 994-995.

Tang, M. and M. You (2012). Isolation, identification and  characterization of a novel triazophos-degrading Bacillus  sp.(TAP-1). Microbiological Research, 167: 299-305.

Upadhyay, S., Kumar, N., Singh, V.K. and A. Singh (2015).  Isolation, characterization and morphological study of  Azotobacter isolates. Journal of Applied and Natural  Science, 7(2): 984-990. 

Valavanidis, A. (2018). Glyphosate. The most widely used  herbicide. Scientific Reviews. Chem-toxecotox. org., 41p. Yasouri, F.N. (2006). Plasmid-mediated degradation of  diazinon by three bacterial strains Pseudomonas sp.,  Flavobacterium sp. and Agrobacterium sp. Asian Journal  of Chemistry, 18: 2437-2444. 

Zhu, J., Fu, L., Jin, C., Meng, Z. and N. Yang (2019). Study  on the isolation of two Atrazine-Degrading bacteria and  the development of a microbial agent. Microorganisms,  7(80): 1-11.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing