AccScience Publishing / AJWEP / Volume 18 / Issue 2 / DOI: 10.3233/AJW210019
RESEARCH ARTICLE

Enhanced Electrokinetic Remediation of Zinc  Contaminated Soil by Changeover of Composite  Electrolyte

Brijesh Amipara1 ArtiD. Galgale1* Nirav G. Shah1
Show Less
1 Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Baroda - 390001, India
AJWEP 2021, 18(2), 59–65; https://doi.org/10.3233/AJW210019
Submitted: 25 May 2021 | Revised: 4 February 2021 | Accepted: 4 February 2021 | Published: 29 April 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The combination of electrolytes 0.1 M potassium chloride (KCl) and 0.1 M citric acid (CA) was  investigated in a bench scale reactor for removal of zinc (Zn) from soil using electrokinetic remediation (EKR).  The study was conducted over a period of 144 hours for different experimental set-ups. When KCl was used as a  single electrolyte, 49.38 % removal of zinc was obtained with the changeover of electrolyte at every 24 hours, as  compared to 12.5 %, when the reactor was operated as batch reactor without changeover. The use of composite  electrolyte in cathode compartment and single electrolyte in anode compartment showed 79.06 % removal, whereas  the use of composite electrolyte in both anode and cathode compartment gave 21.74 % removal

Keywords
Electrokinetic remediation
composite electrolyte
removal of zinc.
Conflict of interest
The authors declare they have no competing interests.
References

Acar Y.G. and A.N. Alshawabkeh (1993). Principles of  electrokinetic remediation. Environmental Science and  Technology, 27: 2638-2647.

Acar, Y.B., Galeb, R.J., Alshawabkeh, A.N., Marks,  R.E., Puppal, S., Brickad, M. and R. Parker (1995).  Electrokinetic remediation: Basics and technology status.  Journal of Hazardous Materials, 40: 117-137.

Ahmed, A.-S. and C. Peng (2012). New process for ex situ  electrokinetic pollutant removal. I: Process evaluation.  Journal of Industrial and Engineering Chemistry, 18: 2162-2176.

American Galvanizers Association. (n.d.). Retrieved from  https://galvanizeit.org/uploads/publications/Galvanized_ Steel_Contribution_Zinc_Soil_Environment.pdf

Amrate S., Akretche, D.E., Innocentc, C. and P. Seta (2005).  Removal of Pb from a calcareous soil during EDTAenhanced electrokinetic extraction. Science of the Total  Environment, 349: 56-66.

Amrate, S. and D.E. Akretche (2005). Modeling EDTA  enhanced electrokinetic remediation of lead contaminated  soils. Chemosphere, 1376-1383.

APHA (2017). Standard Methods for examination of water  and wastewater (22nd edition). American Public Health  Association.

Asati, A., Pichhode, M. and N. Kumar (2016). Effect of  heavy metals on plants: An overview. International  Journal of Application or Innovation in Engineering &  Management (IJAIEM), 5: 79-101.

Baeka, K., Kima, D.-H., Parka, S.-W., Ryua, B.-G., Bajargal,  T., J.-S. Yang (2009). Electrolyte conditioning enhanced  electrokinetic remediation of arsenic-contaminated mine  tailing. Journal of Hazardous Materials, 161: 457-462.

Habibul, N., Hu, Y. and G.-P. Sheng (2016). Microbial fuel  cell driving electrokinetic remediation of toxic metal  contaminated soils. Journal of Hazardous Materials,  318: 9-14.

Huang, T., Zhou, L., Liu, L. and M. Xia (2018). Ultrasoundenhanced electrokinetic remediation for removal of Zn,  Pb, Cu and Cd in municipal solid waste incineration fly  ashes. Waste Management, 75: 225-235

Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Irshad, B.  and C. Dumat (2017). A comparison of technologies forremediation of heavy metal contaminated soils. Journal  of Geochemical Exploration, 182: 247-268.

Kim, H.-A., Lee, K.-Y., Lee, B.-T., Kim, S.-O. and K.- W., Kim (2012). Comparative study of simultaneous  removal of As, Cu, and Pb using different combinations  of electrokinetics with bioleaching by Acidithiobacillus  ferrooxidans. Water Research, 5591-5599.

Liu, J. (2018). Soil remediation using soil washing followed  by ozone oxidation. Journal of Industrial and Engineering  Chemistry, 65: 31-34.

Long X.X., Yang X.E., Ni W.Z., Ye Z.Q., He Z.L., Calvert,  D.V. and J.P. Stoffella (2003). Assessing zinc thresholds  for phytotoxicity and potential dietary toxicity in selected  vegetable crops. Communications in Soil Science and  Plant Analysis, 34(9-10): 1421-1434. 

Mulligan C.N., Yong R.N. and B.F. Gibbs (2001).  Remediation technologies for metal-contaminated soils  and groundwater: An evolution. Engineering Geology,  60: 193-207.

Nazir, R., Khan, M., Masab, M., Rehman, H.R., Rauf, N. U.,  Surrya, S., Nosheen, A., Sajed, M., Ullah, M., Rafeeq, M.  and Z. Shaheen (2015). Accumulation of heavy metals  (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants  and analysis of physico-chemical parameters of soil  and water collected from Tanda Dam Kohat. Journal of  Pharmaceutical Sciences & Research, 7(3): 89-97.

Plum, L.M., Rink, L. and H. Hasse (2010). The Essential  Toxin: Impact of Zinc on Human Health. International  Journal of Environmental Research and Public Health,  7(4): 1342-1365.

Probstein, R.F. and H.R. Edwin (1993). Removal of  contaminants from soils by electric fields. Science, 260: 498-503.

Reichman, S. (2002). The responses of plants to metal  toxicity: A review focusing on copper, manganese and  zinc. Melbourne, Australia: Australian Minerals & Energy  Environment Foundation.

Selvi, A. and A. Rajshekhar (2018). A statistical approach  of zinc remediation using acidophilic bacterium via an  integrated approach of bioleaching enhanced electrokinetic  remediation (BEER) technology. Chemosphere, 207: 753-763.

Shah, A., Niaz, A., Ullah, N., Rehman, A., Akhlaq, M., Zakir,  Muhammad and M.K. Khan (2013). Comparative study ofheavy metals in soil and selected medicinal plants. Journal  of Chemistry, 2013: 621265.

Sharma, R.K., Agrawal, M. and F.M. Marshall (2008). Heavy  metal (Cu, Zn, Cd and Pb) contamination of vegetables  in urban India: A case study in Varanasi. Journal of  Environmental Pollution, 154: 254-263.

Skibsted, G., Ottosen, L.M., Elektorowicz, M. and P.E. Jensen  (2018). Effect of long-term electrodialytic soil remediation  on Pb removal and soil weathering. Journal of Hazardous  Materials, 358: 459-466.

Su, C., Jiang, L.Q. and W.J. Zhang (2014). A review on heavy  metal contamination in the soil worldwide: Situation,  impact and remediation techniques. Environmental  Skeptics and Critics, 3(2): 24-38.

Tang, J., He, J., Liu, T., Xin, X. and H. Hu (2017). Removal  of heavy metal from sludge by the combined application  of a biodegradable biosurfactant and complexing  agent in enhanced electrokinetic treatment. Journal of  Chemosphere, 189: 599-608.

 Vereda-Alonso, C., Heras-Lois, C., Gomez-Lahoz, C., GarciaHerruzo, F. and J.M. Rodriguez-Maroto (2007). Ammonia  enhanced two-dimensional electrokinetic remediation of  copper spiked kaolin. Electrochimica Acta, 52: 3366-3371.

Villen-Guzman, M., Garcia-Rubio, A., Paz-Garcia, J.M.,  Rodriguez-Maroto, J.M., Garcia-Herruzo, F., VeredaAlonso, C. and C. Gomez-Lahoz (2015). The use of  ethylenediaminetetraacetic acid as enhancing agent  for the remediation of a lead polluted soil. Journal of  Electrochimica Acta, 181: 82-89.

Virkutytea, J., Sillanp M. and P. Latostenmaa (2002).  Electrokinetic soil remediation-critical overview.. The  Science of the Total Environment, 289: 97-121.

White, P.J. and M.R. Broadley (2001). Chloride in soils  and its uptake and movement within the plant: A review.  Annals of Botany, 88: 967-988.

Wuana, R.A. and F.E. Okieimen (2011). Heavy metals in  contaminated soils: A review of sources, chemistry, risks  and best available strategies for remediation. International  Scholarly Research Network, 2011: 402647.

Xu, Y., Zhang, C., Zhao, M., Rong, H., Zhang, K. and Q.  Chen (2016). Comparison of bioleaching and electrokinetic  remediation processes for removal of heavy metals from  wastewater treatment sludge. Chemosphere, 1-6.

Yang, W. and H. Zhou (2011). Experimental study on  electrokinetic remediation of in-situ Cd contaminated  soil by applied voltage. In: International Conference  on Materials for Renewable Energy & Environment.  Shanghai, China: IEEE.

Yao, Z.L. (2012). Review on remediation technologies of soil  contaminated by heavy metals. Procedia Environmental  Science, 722-729.

Zhang, Y., Chu, G., Dong, P., Xiao, J., Qi, M., Baumgarte,  M., Xu, B. and T. Hao (2018). Enhanced electrokinetic  remediation of lead and cadmium contaminated paddy soil  by the composite electrolyte of sodium chloride and citric  acid. Soils and Sediments, 18: 1915-1924.

Zhongming, L., Yu, J.-W. and I. Neretnieks (1996). A new  approach to electrokinetic remediation of soils polluted  by heavy metals. Journal of Contaminant Hydrology,  22: 241-253.

Zhou, M., Xu, J., Zhu, S., Wang Y. and H. Gao (2018).  Exchange electrode-electrokinetic remediation of Crcontaminated soil using solar energy. Separation and  Purification Technology, 297-306.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing