AccScience Publishing / AJWEP / Volume 18 / Issue 1 / DOI: 10.3233/AJW210008
RESEARCH ARTICLE

Abiogenic and Biogenic Petroleum Origin: A Common  Theory for Geological Surveys

Irina Volkova1 Dmitry Gura2,3* Ilia Aksenov4
Show Less
1 Department of Social and Economic Geography, Institute of Geography RAS, Moscow, Russian Federation
2 Department of Cadastre and Geoengineering, Kuban State Technological University, Moscow Str. 2B, Krasnodar, 350072, Russian Federation
3 Department of Geodesy, Kuban State Agrarian University, Kalinina Str., 13, Krasnodar, 350044, Russian Federation
4 Department of State Law and Customs Administration, Vladimir State University named after Alexander Grigoryevich and Nikolai Grigoryevich Stoletovs, Gorky Str., 87, Vladimir, 600000, Russian Federation
AJWEP 2021, 18(1), 59–65; https://doi.org/10.3233/AJW210008
Submitted: 30 November 2020 | Revised: 10 December 2020 | Accepted: 10 December 2020 | Published: 25 January 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Biogenic and abiogenic origins of petroleum are a pertinent problem today, which have been examined in  this article including the current state of theories and experimental facts. The paper provides an overview of works  on this subject over the past decade. As analysis of scientific research efforts, majority of scientists suggest that  petroleum is organic in origin. The second theory also includes reliable facts and hypotheses about the existence  of abiogenic hydrocarbons. This origin is associated with tectonic geological processes, in particular, orogenesis,  rifting, excessive releases, erosion, sediment deposition, deep gas releases, etc. The results of experimental studies,  the existing concepts presented in this review, show that despite disagreements between the proponents of both  theories, common beliefs remain prevalent, namely, about the process of hydrocarbons formation both on Earth  and other objects of the solar system. The analysis concludes that the consolidation of these theories is of high  scientific interest and has great potential for confirmation of numerous hypotheses, facts from the scientific point  of view and the search for alternative energy sources due to environmental and economic issues associated with  the impoverishment of natural resources. This review study is valuable for generalising various scientific theories,  which can be used for future research efforts and modelling new ideas about the origin of hydrocarbons

Keywords
Chemolithoautotrophs
hydrocarbons
petroleum
sedimentary rocks
theory of petroleum origin
Conflict of interest
The authors declare they have no competing interests.
References

Barenbaum, A.A. (2019). New representations on oil  and gas origin in connection with the opening of the  phenomenon of reserves replenishment in exploited oil  fields. Georesources, 21(4): 34-39.

Barnes, J.D., Manning, C.E., Scambelluri, M. and J.  Selverstone (2018). The behavior of halogens during  subduction-zone processes. In: The role of halogens in  terrestrial and extraterrestrial geochemical processes.  Springer, Cham, pp. 545-590.

Behrouzifar, M., Araghi, E.S. and A.E. Meibodi (2019).  OPEC behavior: The volume of oil reserves announced.  Energy Policy, 127: 500-522.

Blankart, C.B. (2017). Peak oil theory. In: Economic Ideas  You Should Forget. Springer, Cham, pp. 27-28.

Butar-Butar, E.S., Priantoro, E.A. and T. Sembiring (2020).  Potential of organic waste from Caringin Central Market as  raw material for biogas and compost. In: IOP Conference  Series: Earth and Environmental Science, IOP Publishing,  483(1): 012019.

Chen, Z., Yang, Y., Wang, T.G., Cheng, B., Li, M., Luo,  B. and R. Fang (2017). Dibenzothiophenes in solid  bitumens: Use of molecular markers to trace paleo-oil  filling orientations in the Lower Cambrian reservoir of  the Moxi–Gaoshiti Bulge, Sichuan Basin, southern China.  Organic Geochemistry, 108: 94-112.

Efimov, O., Kondratenko, L., Barsukova, M. and A.  Philippova (2020). Heavy metals in sediments of the  Vasyugan river basin (Russian Federation), chemical  composition and environmental risk. Asian Journal of  Water, Environment and Pollution, 17(2): 81-89.

Gashimov, R.R., Salyaev, V.V., Nuykin, A.M., Arzamastsev,  G.G., Safin, A.F., Mukhametshin, I.R. and A.V. Prusakov  (2017). Well completion technology evaluation for oil  rim field development using permanent tracers: A case  study from North-Komsomolskoye field. In: SPE Russian  Petroleum Technology Conference. Society of Petroleum  Engineers, pp. 1-15.

Genovez, P.C., Freitas, C.C., Sant’Anna, S.J., Bentz, C.M.  and J.A. Lorenzzetti (2017). Oil slicks detection from  polarimetric data using stochastic distances between  complex wishart distributions. IEEE Journal of Selected  Topics in Applied Earth Observations and Remote Sensing,  10(2): 463-477.

Hovland, M., Rueslåtten, H. and H.K. Johnsen (2018). Large  salt accumulations as a consequence of hydrothermal  processes associated with ‘Wilson cycles’: A review Part  1: Towards a new understanding. Marine and Petroleum  Geology, 92: 987-1009. 

Hutter, A.D. and L.P. Beranek (2020). Provenance of  Upper Jurassic to Lower Cretaceous syn-rift strata in  the Terra Nova oil field, Jeanne d’Arc basin, offshore  Newfoundland: A new detrital zircon U-Pb-Hf reference  frame for the Atlantic Canadian margin. AAPG Bulletin,  (20,200,720).

Karanfil, F. and L.D. Omgba (2017). Reconsidering the  scarcity factor in the dynamics of oil markets: An empirical  investigation of the (mis) measurement of oil reserves. Energy, 137: 209-218. 

Kolesnikov, A.Y., Saul, J.M. and V.G. Kutcherov (2017).  Chemistry of hydrocarbons under extreme thermobaric  conditions. Chemistry Select, 2(4): 1336-1352. 

Kutcherov, V., Ivanov, K., Mukhina, E. and A. Serovaiskii  (2020). Deep Hydrocarbon Cycle: An Experimental  Simulation. In: Carbon in Earth’s Interior. John Wiley &  Sons, Inc, pp. 329-339.

Kwok, S. (2017). Abiotic synthesis of complex organics in  the Universe. Nature Astronomy, 1(10): 642-643. 

Lei, Q., Yang, L., Duan, Y., Weng, D., Wang, X., Guan, B.  and Y. Guo (2018). The “fracture-controlled reserves”  based stimulation technology for unconventional oil and  gas reservoirs. Petroleum Exploration and Development,  45(4): 770-778.

Liu, G., Liu, B., Huang, Z., Chen, Z., Jiang, Z., Guo, X.  and L. Chen (2018). Hydrocarbon distribution pattern  and logging identification in lacustrine fine-grained  sedimentary rocks of the Permian Lucaogou Formation  from the Santanghu basin. Fuel, 222: 207-231. 

Lorenz, R.D., Mitchell, K.L., Kirk, R.L., Hayes, A.G.,  Aharonson, O., Zebker, H.A. and S.D. Wall (2008).  Titan’s inventory of organic surface materials. Geophysical  Research Letters, 35(2): 1-6. 

Ma, Y. (2020). Progress and Theory of Marine Strata Oil and  Gas Exploration in the Ordos Basin. In: Marine Oil and  Gas Exploration in China. Springer, Berlin, Heidelberg,  pp. 341-351.

Muslimov, R.K. and I.N. Plotnikova (2019). Modeling the  development of oil fields, considering the mature fields  reforming and refill by the deep hydrocarbons (Russian).  Oil Industry Journal, 2019(03): 56-60.

Ostovar, M., Ghiassi, R., Mehdizadeh, M.J. and N.  Shariatmadari (2020). Effects of Crude Oil on Geotechnical  Specification of Sandy Soils. Soil and Sediment  Contamination: An International Journal, 1: 1-16. 

Priyadarsini, A., Barbora, L. and V.S. Moholkar (2020).  BioGTL: A potential technique for converting methane  to methanol (waste to energy). In: Alternative fuels and  their utilization strategies in internal combustion engines.  Springer, Singapore, pp. 293-309.

Roedder, E. and K.H. Wolf (1976). Fluid inclusion evidence  on the genesis of ores in sedimentary and volcanic rocks.  Handbook of Stratabound and Stratiform Ore Deposits,  4: 67-110. 

Schuster, A.K., Hartley, N.J., Vorberger, J., Döppner,  T., van Driel, T., Falcone, R.W. and D.O. Gericke  (2020). Measurement of diamond nucleation rates from  hydrocarbons at conditions comparable to the interiors  of icy giant planets. Physical Review B, 101(5): 054301

Scisciani, V., Patruno, S., Tavarnelli, E., Calamita, F., Pace,  P. and D. Iacopini (2019). Multi-phase reactivations and  inversions of Paleozoic–Mesozoic extensional basins  during the Wilson cycle: Case studies from the North  Sea (UK) and the Northern Apennines (Italy). Geological  Society, London, Special Publications, 470(1): 205-243.

Serovaiskii, A. (2018). Influence of the deep petroleum  transformation on the CO2 budget of the atmosphere.  Doctoral dissertation, KTH Royal Institute of Technology.

Shelepov, V.V. and O.V. Tyukavkina (2020). Geophysical  methods for determining the reservoir properties of  structurally complex lower–middle Jurassic reservoirs  within hydrocarbon fields in the latitudinal Ob region.  Moscow University Geology Bulletin, 75(2): 145-149. 

Sorokhtin, N.O., Lobkovsky, L.I. and N.E. Kozlov (2020).  The crust–mantle carbon cycle and origin of Abiogenic  Hydrocarbons. Oceanology, 60(2): 248-258.

Stetter, K.O. and R. Huber (2000). The role of  hyperthermophilic prokaryotes in oil fields. In: Microbial  biosystems: New frontiers. Proceedings of the 8th  International Symposium on Microbial Ecology. Atlantic  Canada Society for Microbial Ecology, Halifax, Canada,  pp. 369-375.

Sun, T., Luo, X., Qing, H., Kou, X., Sheng, Z., Xu, G. and  Y. Zuo (2020). Characteristics and natural gas origin of  middle–late Triassic marine source rocks of the Western  Sichuan depression, SW China. Acta Geologica Sinica –  English Edition, 94(2): 376-398.

Walters, C.C. (2017). Origin of petroleum. In: Springer  Handbook of Petroleum Technology. Springer, Cham,  pp. 359-379.

Youssef, N., Elshahed, M.S. and M.J. McInerney (2009).  Microbial processes in oil fields: Culprits, problems, and  opportunities. Advances in Applied Microbiology, 66:  141-251. 

Yuan, S. and Q. Wang (2018). New progress and prospect  of oilfields development technologies in China. Petroleum  Exploration and Development, 45(4): 698-711.

Zolotov, M.Y. and E.L. Shock (2000). An abiotic origin for  hydrocarbons in the Allan Hills 84001 martian meteorite  through cooling of magmatic and impact-generated gases.  Meteoritics & Planetary Science, 35(3): 629-638.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing