AccScience Publishing / AJWEP / Volume 16 / Issue 2 / DOI: 10.3233/AJW190021
RESEARCH ARTICLE

Low-Cost Sensors for Air Quality Monitoring in  Developing Countries – A Critical View

Amit Kumar1* B.R. Gurjar2
Show Less
1 Department of Civil Engineering, Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar – 144011, India
2 Department of Civil Engineeringn Institute of Technology (IIT) Roorkee Roorkee – 247667, India
AJWEP 2019, 16(2), 65–70; https://doi.org/10.3233/AJW190021
Submitted: 4 November 2018 | Revised: 13 March 2019 | Accepted: 13 March 2019 | Published: 24 April 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Air quality monitoring in developing countries is in a dismal state. The monitoring of ambient air  can be done by conventional/fixed stations and recently emerging low-cost sensors. The study first discusses the  low-cost sensor and its differences with respect to conventional sensor. The existing network employing low-cost  sensors have been explained in detail to create a better understanding. While deploying these sensors in developing  countries one can open a plethora of opportunities; it also poses a number of challenges required to be dealt with,  for effective monitoring of air quality

Keywords
Air quality monitoring
developing countries
low-cost sensors
community monitoring
exposure assessment
Conflict of interest
The authors declare they have no competing interests.
References

AIRNOW (2016). Local Air Quality Conditions and forecasts.  http://airnow.gov/ Accessed Nov 2016.

Aleixandre, M. and M. Gerboles (2012). Review of small  commercial sensors for indicative monitoring of ambient  gas. Chem Eng Trans, 30: 169–174. doi: 10.3303/ CET1230029

Awe, Y., Hagler, G., Kleiman, G. et al (2017). Filling the Gaps:  Improving Measurement of Ambient Air Quality in Low  and Middle Income Countries. Discussion Draft; http:// pubdocs.worldbank.org/en/425951511369561703/Fillingthe-Gaps-White-Paper-Discussion-Draft-November-2017. pdf

Baldasano, J.M., Valera, E. and P. Jimenez (2003). Air quality  data from large cities. Sci Total Environ, 307: 141–165.

Basu, I. (2016). India’s First Air Quality Index Launched by  Prime Minister Narendra Modi. HUFFPOST.

Castell, N., Dauge, F.R., Schneider, P. et al. (2017). Can  commercial low-cost sensor platforms contribute to air  quality monitoring and exposure estimates? Environ Int,  99: 293–302. doi: 10.1016/j.envint.2016.12.007

Cervero, R. (2013). Linking urban transport and land use in  developing countries. J Transp Land Use, 6: 7–24.

Chinthala, S. and M. Khare (2012). Effect of Air Pollutants  on Vegetation in Tropical Climate: A Case Study of Delhi  City. In: Khare, M. (ed.). Air Pollution – Monitoring,  Modelling, Health and Control. InTech.

CPCB (2018). Central Control Room for Air Quality  Management – All India. https://app.cpcbccr.com/ccr/#/ caaqm-dashboard-all/caaqm-landing

DEA (2011). Baseline Survey on government owned Air  Quality Monitoring Networks Report.

Defra (2014). Automatic Urban and Rural Network (AURN).

Devarakonda, S., Sevusu, P., Liu, H. et al. (2013). Realtime air quality monitoring through mobile sensing in  metropolitan areas. In: Proceedings of the 2nd ACM  SIGKDD International Workshop on Urban Computing  – UrbComp ’13.

EU (2008). Directive 2008/50/EC of the European Parliament  and the Council of 21 May 2008 on Ambient Air Quality  and Cleaner Air for Europe.

Greenpeace (2016). Greenpeace’s City Rankings for PM2.5  in Thailand.

Gulia, S., Mittal, A. and M. Khare (2018). Quantitative  evaluation of source interventions for urban air quality  improvement – A case study of Delhi city. Atmos Pollut  Res, 9: 577–583.

Gulia, S., Shiva Nagendra, S.M., Khare, M. and I. Khanna  (2015). Urban air quality management – A review. Atmos  Pollut Res, 6: 286–304. doi: 10.5094/APR.2015.033

Gurjar, B.R., Jain, A., Sharma, A. et al. (2010). Human health  risks in megacities due to air pollution. Atmos Environ, 44: 4606–4613. doi: 10.1016/j.atmosenv.2010.08.011

Gurjar, B.R., Ravindra, K. and A.S. Nagpure (2016). Air  pollution trends over Indian megacities and their local-toglobal implications. Atmos Environ, 142: 475–495. doi:  10.1016/j.atmosenv.2016.06.030

Han, X. and L.P. Naeher (2006). A review of traffic-related  air pollution exposure assessment studies in the developing  world. Environ Int, 32:106–120.

HEI (2013). Understanding the health effects of ambient  ultrafine particles. HEI Perspectives 3.

IndiaSpend (2017). Designing a new #Breathe Human  Interface for Real-time Air Quality Monitoring Data.  http://www.indiaspend.com/the-air-we-breathe/design-anew-breathe-human-interface-for-real-time-air-qualitymonitoring-data-76441. Accessed 4 Aug 2018

Jiao, W., Hagler, G., Williams, R. et al. (2016). Community  Air Sensor Network (CAIRSENSE) project: Evaluation of  low-cost sensor performance in a suburban environment  in the southeastern United States. Atmos Meas Tech, 9: 5281–5292. doi: 10.5194/amt-9-5281-2016

Kelly, K.E., Whitaker, J., Petty, A. et al. (2017). Ambient  and laboratory evaluation of a low-cost particulate matter  sensor. Environ Pollut, 221: 491–500. doi: 10.1016/j. envpol.2016.12.039

Kumar, P., Morawska, L., Martani C. et al. (2015). The  rise of low-cost sensing for managing air pollution  in cities. Environ Int, 75: 199–205. doi: 10.1016/j. envint.2014.11.019

Kumar, P., Robins, A., Vardoulakis, S. and R. Britter (2010).  A review of the characteristics of nanoparticles in the  urban atmosphere and the prospects for developing  regulatory controls. Atmos Environ, 44: 5035–5052.

Lin, C., Gillespie, J., Schuder, M.D. et al. (2015). Evaluation  and calibration of Aeroqual series 500 portable gas sensors  for accurate measurement of ambient ozone and nitrogen  dioxide. Atmos Environ, 100: 111–116. doi: 10.1016/j. atmosenv.2014.11.002

Marjovi, A., Arfire, A. and A. Martinoli (2015). High  Resolution Air Pollution Maps in Urban Environments  Using Mobile Sensor Networks. In: IEEE International  Conference on Distributed Computing in Sensor Systems  (DCOSS 2015). Fortaleza, Brazil.

McKercher, G.R., Salmond, J.A. and J.K. Vanos (2017).  Characteristics and applications of small, portable gaseous  air pollution monitors. Environ Pollut, 223: 102–110. doi:  10.1016/j.envpol.2016.12.045

Mead, M.I., Popoola, O.M., Stewart, G.B. et al. (2013). The  use of electrochemical sensors for monitoring urban air  quality in low-cost, high-density networks. Atmos Environ,  70: 186–203. doi: 10.1016/j.atmosenv.2012.11.060

Nnorom, I.C. and O. Osibanjo (2008). Overview of electronic  waste (e-waste) management practices and legislations,  and their poor applications in the developing countries.  Resour Conserv Recycl, 52: 843–858.

Openaq (2018). OpenAQ. https://openaq.org/#/?_k=qrz7y1.  Accessed 4 Aug 2018.

Peters, J.M., Avol, E., Gauderman, W.J. et al. (1999). A  study of twelve Southern California communities with  differing levels and types of air pollution. I. Prevalence of  respiratory morbidity. Am J Respir Crit Care Med, 159: 760–767. doi: 10.1164/ajrccm.159.3.9804143

PurpleAir (2016). PurpleAir Air Quality Map. https://www. purpleair.com/technology. accessed Aug 03, 2018.

Reis, S., Seto, E., Northcross, A. et al. (2015). Integrating  modelling and smart sensors for environmental and human  health. Environ Model Softw, 74: 238–246. doi: 10.1016/j. envsoft.2015.06.003

Roychowdhury, A., Chattopadhyaya, V. and S. Shukla (2016).  Reinventing Air Quality: Potential of low cost alternative  monitoring methods. New Delhi, India. Technical Report;  DOI: 10.13140/RG.2.2.36357.55525

Schneider, P., Castell, N., Vogt, M. et al. (2017). Mapping  urban air quality in near real-time using observations fromlow-cost sensors and model information. Environ Int, 106: 234–247. doi: 10.1016/j.envint.2017.05.005

Shallcross, D.E., Martin, D., Price, C.S. et al. (2009). Shortrange urban dispersion experiments using fixed and  moving sources. Atmos Sci Lett, 10: 59–65.

Singh, R.K., Kumar, J., Kumar, A. et al. (2010). Poly  (3-hexylthiophene): Functionalized single-walled carbon  nanotubes:(6, 6)-phenyl-C61-butyric acid methyl ester  composites for photovoltaic cell at ambient condition. Sol  Energy Mater Sol Cells, 94: 2386–2394. doi: 10.1016/j. solmat.2010.08.023

Snyder, E.G., Watkins, T.H., Solomon, P.A. et al. (2013). The  Changing Paradigm of Air Pollution Monitoring. Environ  Sci Technol, 47: 11369–11377. doi: 10.1021/es4022602

Souza, C.D.R. de, Silva, S.D., Silva, M.A.V. da et al. (2013).  Inventory of conventional air pollutants emissions from  road transportation for the state of Rio de Janeiro. Energy  Policy, 53: 125–135. doi: 10.1016/j.enpol.2012.10.021

Spinelle, L., Gerboles, M., Villani, M.G. et al. (2017). Field  calibration of a cluster of low-cost commercially available  sensors for air quality monitoring. Part B: NO, CO and  CO2. Sensors Actuators, B Chem, 238: 706–715. doi:  10.1016/j.snb.2016.07.036

Spinelle, L., Gerboles, M., Villani, M.G. et al. (2015). Field  calibration of a cluster of low-cost available sensors for air  quality monitoring. Part A: Ozone and nitrogen dioxide.  Sensors Actuators, B Chem, 215: 249–257. doi: 10.1016/j. snb.2015.03.031

Wang, S. and J. Hao (2012). Air quality management in  China: Issues, challenges, and options. J Environ Sci, 24: 2–13. doi: 10.1016/S1001-0742(11)60724-9

Wheeler, D. (2001). Racing to the Bottom? Foreign  Investment and Air Pollution in Developing Countries.  J Environ Dev, 10: 225–245. doi: 10.1177/10704965- 0101003-02

White, R.M., Paprotny, I., Frederick, D.F. et al. (2012).  Sensors and ‘Apps’ for community-based atmospheric  monitoring. Air Waste Manag Assoc, 5: 36–40.

WHO (2005). Air Quality Guidelines: Global Update 2005.

WHO (2014). Ambient Air Pollution database – Update 2014.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing