AccScience Publishing / AJWEP / Volume 18 / Issue 4 / DOI: 10.3233/AJW210051
RESEARCH ARTICLE

Green Biosynthesis of Iron Oxide Nanoparticles and  Testing Their Inhibitory Efficacy Against Some Pathogens

Doaa Kaduim1 Zaid Mahmoud2 Falah Mousa3*
Show Less
1 Al-Karkh Education Third Directorate, Ministry of Education, Baghdad, Iraq
2 Chemistry Department, College of Science, University of Diyala, Iraq
3 Head of Medical Laboratory Techniques Department, Ashur University College, Baghdad, Iraq
AJWEP 2021, 18(4), 119–123; https://doi.org/10.3233/AJW210051
Submitted: 26 May 2021 | Revised: 25 June 2021 | Accepted: 25 June 2021 | Published: 18 November 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The biosynthesis of iron oxide (Fe2O3, also known as haematite) nano particles (NPs) using Hydra helix  and Beta vulgaris aqueous extracts were adduced, respectively, where the extracts act as a stabiliser and reductant  reagent. The crystal structure and size of particles were investigated using X-ray diffraction (XRD), while the  morphology was examined using field emission scanning electron microscopy (FESEM), XRD patterns showed  the synthesised nanoparticles with well-crystallised structure from Beta vulgaris extract with size 12 nm, while  the results by using Hydra helix showed many peaks back to Goethite phase with 16 nm. The antibacterial and  antifungal activity were examined using Staphylococcus (showed inhibition zone diameter 23 mm, 16 mm using  Hydra helix and Beta vulgaris, respectively), E. coli (showed no inhibition) and Candida fungi (showed inhibition  zone 16 mm, 11 mm using Hydra helix and Beta vulgaris, respectively).

Keywords
Iron oxide
nanoparticles
haematite
Beta vulgaris
Hydra helix
Conflict of interest
 Research Article
References

asnet, P., Larsen, G.K., Jadeja R.P., Hung, Y.S. and  Y.B. Zhao (2013). α-Fe2O3 nanocolumns and nanorodsfabricated by electron beam evaporation for visible light  photocatalytic and antimicrobial applications. ACS Appl.  Mater. Inter., 5: 2085-2095.

Dong, H., Zhang, H., Xu, Y. and C. Zhao (2015). Facile  synthesis of α-Fe2O3 nanoparticles on porous human hairderived carbon as improved anode materials for lithium  ion batteries. J. Power Sourc., 300: 104-111.

El-Shaikh, S.M., Harraz, F.A. and K.S. Abdel-Salim (2009).  Catalytic performances of nanostructured iron oxides  synthesized by thermal decomposition technique. J. Alloys  Compd., 487: 716-723.

Huang, L., Weng, X., Chen, Z., Megharaj, M. and R.  Naidu (2014). Green synthesis of iron nanoparticles by  various tea extracts: Comparative study of the reactivity.  Spectrochim Acta A Mol Biomol Spectrosc., 15(130): 295-301.

Ishibashi, K., Fujishima, A., Watanabe, T. and K. Hashimoto  (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique.  Electrochem.Commun., 2: 207-210.

Jahangirian, H., MHaron, M.J., Ismail, M.H.S., Moghaddam,  R.R., Hejri, L.A., Rezayi, M. and N. Vafaei (2013).Well  diffusion method for evaluation of antibacterial activity  of copper phenyl fatty hydroxamate synthesized from  canola and palm kernel oils. Digest J. of Nanomaterials  and Biostructures., 8: 1263-1270.

Kayania, Z.N., Afzala, A., Butta, M.Z., Batoola, I., Alia,  S.A.Y., Riaz, S. and S. Naseem (2015). Structural, optical,  magnetic and electrical properties of hematite (α-Fe2O3)  nanoparticles synthesized by two methods: Polyol and  precipitation. Mater. Today Proc., 2: 5660-5663.

Leung, Y.H., Chan, C.M.N., Ng, A.M.C., Chan, H.T., Chiang,  M.W.L., Djurisˇic´, A.B., Ng, Y.H., Jim, W.Y., Guo, M.Y.  and F.C.C. Leung (2012). Antibacterial activity of ZnO  nanoparticles with a modified surface under ambient  illumination. Nanotechnology, 23: 475703.

Li, L., Chu, Y., Liu, Y. and L. Dong (2007). Template-free  synthesis and photocatalytic properties of novel Fe2O3  hollow spheres. J. Phys. Chem. C, 111:, 2123-2127.

Long, N.V., Yang, Y., Thi, C.M., Hang, B.T., Cao, Y. and M.  Nogami (2015). Controlled synthesis and characterization  of iron oxide micro-particles for Fe-air battery electrode  material. Colloid Polym. Sci., 293: 49-63

Loo, Y.Y., Chieng, B.W., Nishibuchi, M. and S. Radu (2012).  Synthesis of silver nanoparticles by using tea leaf extract  from Camellia sinensis. Int. J. Nanomed., 7: 4263.

Mishra, M. and D.M. Chun (2015). α-Fe2O3 as a photocatalytic  material: A review. Appl. Catal. A Gen., 498: 126-141.

Mohanpuria, P., Rana, N.K. and S.K. Yadav (2008).  Biosynthesis of nanoparticles: Technological concepts  and future applications. J. Nanopart. Res., 10: 507-517.

Mor, G.K., Prakasam, H.E., Varghese, O.K., Shankar, K. and  C.A. Grimes (2007). A new benchmark for TiO2 nanotube  array growth by anodization. Nano Lett., 7: 2356-2364.

Pal, S. and Y.K. Tak (2007). Does the antibacterial activity  of silver Nanoparticles depend on the shape of the  nanoparticle? A study of the Gram-negative bacterium  Escherichia coli. J. M. Song, Appl. Environ. Microb., 73: 1712-1720.

Raja, K., Jaculine, M.M., Jose, M., Verma, S., Prince,  A.A.M., Ilangovan, K., Sethusankar, K. and S.J. Das  (2015). Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices Microstruct., 86: 306-312.

Vatsha, B., Tetyana, P., Shumbula, P.M., Ngila, G.C.,  Sikhwivhilu, L.M. and R.M. Moutloali (2013). Effects  of precipitation temperature on nanoparticle surface  area and antibacterial behaviour of Mg(OH)2 and MgO  nanoparticles. J. Biomater. Nanobiotechnol., 4: 365-373.

Velioglu, Y.S., Mazza, G., Gao, L. and B.D. Oomah (1998).  Antioxidant activity and total phenolics in selected fruits,  vegetables, and grain products. J. Agric. Food Chem., 46: 4113-4117.

Wang, X., Chen, X., Gao, L., Zheng, H., Ji, M., Tang, C.,  Shen, T. and Z. Zhang (2004). Synthesis of α-FeOOH  and α-Fe2O3 nanorods and electrochemical properties of  α-FeOOH. J. Mater. Chem., 14: 905-907.

Zawadzka, K., Kadziola, K., Felczak, A., Wronska, N.,  Piwonski, I., Kisielewska, A. and K. Lisowska (2014).  Surface area or diameter – which factor really determines  the antibacterial activity of silver nanoparticles grown on  TiO2 coatings. New J. Chem., 38: 3275-3281.

Zhao, Y.M., Li, Y.-H., Ma, R.Z., Roe, M.J., McCartney, D.G.  and Y.Q. Zhu (2006). Growth and characterization of iron  oxide nanorods/nanobelts prepared by a simple iron–water  reaction. Small, 2: 422-427.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing