AccScience Publishing / AJWEP / Volume 17 / Issue 3 / DOI: 10.3233/AJW200036
RESEARCH ARTICLE

Ability of Mangrove Fungi in Biodegradation  of Hexadecane

Nengah Dwianita Kuswytasari1* Riva Ariny Elhaque1 Alfia R Kurniawati2 Nur Hidayatul Alami1 Enny Zulaika1 Maya Shovitri1 Ni Nyoman Tri Puspaningsih3 Ni’matuzahroh 4
Show Less
1 Biology Department, Universitas Airlangga, Indonesia
2 Biology Department, Institut Teknologi Sepuluh Nopember, Indonesia
3 Department of Biology Education, Raden Fatah Islamic State University, Indonesia
4 Chemical Department, Universitas Airlangga, Indonesia
AJWEP 2020, 17(3), 55–59; https://doi.org/10.3233/AJW200036
Submitted: 2 February 2020 | Revised: 5 June 2020 | Accepted: 5 June 2020 | Published: 12 August 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Oil pollution, especially in the marine environment, has become a serious environmental problem. Hexadecane (HXD) is a major alkane component and it is present in the aliphatic fragment of crude oil, which can be used by fungi as a sole carbon source. Biosurfactant which is produced by fungi facilitates HXD degradation. This study investigated the ability of mangrove fungi to be used as HXD and produce biosurfactant. The medium used to determine the ability of fungi to use hexadecane is MSM-HXD 2%, whereas Hua medium is used for determining the potential for producing biosurfactants. Biosurfactant production by fungi strains was indicated by oil displacement test, the reduction in surface tension and emulsion index. The results showed that 13 out of 16 species of fungi can use HXD as a sole carbon source. Inonotus radiatus LM 3020 is observed to be the most capable isolate to use HXD with a growth ratio of 6.0, and can produce biosurfactant with a positive oil displacement test (ODT) value whose minimum surface tension was 54.01 dyne/cm but the emulsion index was found to be zero.

Keywords
Biodegradation
fungi
hexadecane
mangrove
Conflict of interest
The authors declare they have no competing interests.
References

Al-Hawash, A.B., Zhang, J., Li, S., Liu, J., Ghalib, H.B. and X. Zhang (2018). Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. Ecotoxicology and Environmental Safety, 164: 398-408. Doi:10.1016/j. ecoenv.2018.08.049.

Al-Jawhari, I.F.H. (2014). Ability of some soil fungi in biodegradation of petroleum hydrocarbon. Journal of Applied & Environmental Microbiology, 2(2): 46-52.

Barreto, R.V.G., Hissa, D.C., Paes, F.A., Grangeiro, T.B., Nascimento, R.F., Rebelo, L.M., Craveiro, A.A. and V.M.M. Melo (2010). New approach for petroleum hydrocarbon degradation using bacterial spores entrapped in chitosan beads. Bioresource Technology, 101: 2121-2125. Doi: 10.1016/j.biotech.2009.11.004.

Cooper, D.G. and B.G. Goldenberg (1987). Surface- active agents from two Bacillus species. Applied and Environmental Microbiology, 53(2): 224-229.

Dashti, N., Al-Awadhi, H., Khanafer, M., Abdelghany, S. and S. Radwan (2008). Potential of hexadecane-utilizing soil- microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy. Chemosphere, 70: 475-479. Doi:10.1016/j. chemosphere.2007.06.052.

Grund, A., Shapiro, J., Fennelwald, M., Bacha, P., Leahy,J., Markbreiter, K., Nieder, M. and M. Toepfer (1975). Regulation of alkane oxidation in Pseudomonas putida. Journal of Bacteriology, 123(2): 546-556.

Hakanpaa, J., Paananen, A., Askolin, A., Nakari-Setala, T., Parkkinen, T., Penttila, M., Linder, M.B. and J. Rouvinen (2004). Atomic resolution structure of the HFBII hydrophobin, a self-assembling amphiphile. Journal of Biological Chemistry, 279: 534-539. Doi: 10.1074/jbc. M309650200.

Kuswytasari, N.D., Shovitri, M. and R.D. Andriyadi(2011). Soil mold diversity along the coastal Wonorejo Surabaya. Proceeding of the International Conferences on Mathematics and Sciences.

Lecomte du Nouy, P. (1919). A new apparatus for measuring surface tension. The Journal of General Physiology, 521.

Maddela, N.R., Scalvenzi, L., Perez, M., Montero, C. and J.M. Gooty (2015). Efficiency of indigenous filamentous fungi for bioremediation of petroleum hydrocarbons in medium and soil: Laboratory study from Ecuador.Bulletin Environmental Contamination and Toxicology95: 385-394.

Mahjoubi, M., Jaouani, A., Guesmi, A., Amor, S.B., Jouini, A., Cherif, H., Najjari, A., Boudabous, A and A. Cherif(2013). Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: Isolation, identification and characterization of the biotechnological potential. New Biotechnology, 30(6): 723-733. http:// dx.doi.org/10.1016/j.nbt.2013.03.004.

Meiliawati, D. and N.D. Kuswytasari (2013). Isolasi dan Identifikasi Jamur Kayu Lignolitik dari Vegetasi Mangrove Wonorejo. Jurnal Sains dan Seni Pomits, 2(1): 2337-3520(in Indonesian language).

Meng, L., Li, H., Bao, M. and P. Sun (2017). Metobolic pathway for a new strain Pseudomonas synxantha LSH-7: From chemotaxis to uptake of n-hexadecane. Scientific Report, 7: 39068: 1-13.

Nie, Y., Chi, C.-Q., Fang, H., Liang, J., Lu, S., Lai, G., Tang, Y. and X. Wu (2014). Diverse alkane hydroxylase genes in microorganisms and environments. Scientific Reports,
4: 4968.

Potin, O., Veignie, E. and C. Rafin (2004). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiology Ecology, 51: 71-78.

Sarker, M., Rashid, M.M. and M. Mola (2011). Waste plastic conversion into hydrocarbon fuel materials. Journal of Environmental Science and Engineering, 5: 603-609.

Schoefs, O., Perrier, M. and R. Samson (2004). Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl. Micobiol. Biotechnol. 64: 53-61. DOI 10.1007/s00253-003-1423-3.

Shiri, Z., Kermanshahi, R.K., Soudi, M.R. and D. Farajzadeh (2015). Isolation and characterization of an n-hexadecane degrading Acinetobacter baumannii KSS1060 from petrochemical wastewater treatment plant. Int. J. Environ. Sci. Technol., 12: 455-464. DOI 10.1007/s13762-014- 0702-0.

Soeb, E., Ahmed, N., Akhter, J., Badar, U., Siddiqui, K., Ansari, F.A., Waqar, M., Imtiaz, S., Akhtar, N., Shaikh, Q.A., Baig, R., Butt, S., Khan, S., Khan, S., Hussain, S., Ahmed, B. and M.A. Ansari (2015). Screening and characterization of biosurfactan-producing bacteria isolated from the Arabian sea coast of Karachi. Turkish Journal of Biology, 39: 210-216. Doi:10.3906/biy-1405-63.

Thaniyavarn, J., Chianguthai, T., Sangvanich, P., Roongsawang, N., Washio, K., Morikawa, M. and S. Thaniyavarn (2014). Production of sophorolipid biosurfactan by Pichia anomala. Bioscience, Biotechnology, and Biochemistry 72(8): 2061-2068. DOI: 10.1271/bbb.80166.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing