AccScience Publishing / AJWEP / Volume 16 / Issue 1 / DOI: 10.3233/AJW190006
RESEARCH ARTICLE

Prediction of the Penetration Rate and Number of  Consumed Disc Cutters of Tunnel Boring Machines  (TBMs) Using Artificial Neural Network (ANN)  and Support Vector Machine (SVM)—Case Study:  Beheshtabad Water Conveyance Tunnel in Iran

Alireza Afradi1 Arash Ebrahimabadi1* Tahereh Hallajian1
Show Less
1 Department of Mining and Geology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
AJWEP 2019, 16(1), 49–57; https://doi.org/10.3233/AJW190006
Submitted: 11 November 2018 | Revised: 28 November 2018 | Accepted: 28 November 2018 | Published: 10 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Tunnel boring machines (TBMs) are designed to excavate underground spaces and widely used in  tunneling, civil and mining projects. TBM performance prediction substantially deals with the evaluation of  machine’s penetration rate and the number of consumed disc cutters. There are various methods and equations  to predict the TBMs performance in the literature. In this paper, we predicted the penetration rate and number of  consumed disc cutters in Beheshtabad water conveyance tunneling project, one of the major water conveyance  tunneling projects in Iran, using Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods.  Results showed that both approaches are very effective but SVM yields more precise and realistic findings than  ANN.

Keywords
TBM performance prediction
artificial neural network
support vector machine
Beheshtabad water conveyance tunnel.
Conflict of interest
The authors declare they have no competing interests.
References

Ahmadi, A., Zolfagharipoor, M.A. and A.A. Afzali (2018).  Stability Analysis of Stakeholders’ Cooperation in InterBasin Water Transfer Projects: A Case Study. Water Resour  Manage. https://doi.org/10.1007/s11269-018-2065-7

Alsahly, A., Stascheit, J. and G. Meschke (2016). Advanced  finite element modeling of excavation and advancement  processes in mechanized tunneling. Adv Eng Softw, 100: 198-214. https://doi.org/10.1016/j.advengsoft.  2016.07.011

Bagherpour, R. and M. Rahimdel, M. (2016). The Dangerous  Condition of Ground during High Overburden Tunneling  (A Case Study in Iran). Periodica Polytechnica Civil  Engineering, 60(1): 11-20. https://doi.org/10.3311/ PPci.7923

Bamford, W.F. (1984). Rock test indices are being successfully  correlated with tunnel boring machine performance. In: Proceedings of the 5th Australian Tunneling Conference,  Melbourne, Vol. 2.

Benato, A. and P. Oreste (2015). Prediction of penetration  per revolution in TBM tunneling as a function of intact  rock and rock mass characteristics. Int. J. Rock Mech.  Min. Sci., 74: 119-127.

Bieniawski, Z.T., Celada, B., Galera, J.M. and I. Tardáguila  (2008). New applications of the excavability index for  selection of TBM types and predicting their performance.  ITA World Tunneling Congress, Agra, India.

Boyd, R.J. (1986). Hard rock continuous mining machine:  Mobile Miner MM-120. In: D.F. Howarth et al. (Editors),  Rock Excavation Engineering Seminar, Dept. Mining and  Met. Eng, University of Queensland.

Büchi, E. (1984). Influence of geological parameters on the  propulsion achievement of a tunnel drilling machine.  Thesis, University of Berne.

Cho, J., Jeon, S., Jeong, H. and S. Chang (2013). Evaluation  of cutting efficiency during TBM disc cutter excavation  within a Korean granitic rock using linear-cutting-machine  testing and photogrammetric measurement. Tunn. Undergr.  Space Technol., 35: 37–54.

Farmer, I.W. and N.H. Glossop (1980). Mechanics of disc  cutter penetration. Tunnels Tunnell. Int., 12(6): 22-25.

Farrokh, E., Rostami, J. and C. Laughton (2011). Analysis  of unit supporting time and support installation time for  Open TBMs. Rock Mechanics and Rock Engineering,  44(4): 431-445.

Geng, Q., Wei, Z., Meng, H. and F.J. Macias (2016).  Mechanical performance of TBM cutterhead in mixed  rock ground conditions. Tunn Undergr Space Technol, 57: 76-84. https://doi.org/10.1016/j.tust.2016.02.012

Giacomo, A. Maria, R. and F. Federica (2018). Geological and  mechanical rock mass conditions for TBM performance  prediction. The case of “La Maddalena” exploratory  tunnel, Chiomonte (Italy). Tunnelling Underground Space  Technol. 77: 115-12.

Graham, P.C. (1976). Rock exploration for machine  manufacturers. In: Z.T. Bieniawski (Editor), Exploration  for Rock Engineering. Balkema, Johannesburg.

Jakubowski, J., Stypulkowski, J.B. and F.G. Bernardeau  (2017). Multivariate linear regression and CART  regression analysis of TBM performance at Abu Hamour  Phase-I tunnel. Arch Min Sci, 62(4): 825-841. https://doi. org/10.1515/amsc-2017-0057

Liu QS, Liu JP, Pan YC, Zhang XP, Peng XX, Gong QM, Du  LJ (2017). A wear rule and cutter life prediction model of  a 20-in TBM cutter for granite: A case study of a water  conveyance tunnel in China. Rock Mech Rock Eng. https:// doi.org/10.1007/s00603-017-1176-4

Maji, V.B. and G.V. Theja (2017). A new performance  prediction model for rock TBMs. Indian Geotech J, 47: 364-372. https://doi.org/10.1007/s40098-017-0226-x

Martin, D. (1988). TBM Tunnelling in Poor and Very Poor  Rock Conditions. Tunnels and Tunnelling, 20(3): 22–27.

Mikaeil, R., Zare Naghadehi M. and S. Ghadernejad (2018).  An extended multifactorial fuzzy prediction of hard rock  TBM penetrability. Geotech Geol Eng, 36: 1779-1804.  https://doi.org/10.1007/s10706-017-0432-4

Movinkel, T. and O. Johannessen (1986). Geological  parameters for hard rock tunnel boring. Tunnels Tunnelling,  4: 45-48.

Roby, J., Sandell, T., Kocab, J. and L. Lindbergh (2008).  Current state of disc cutter design and development  directions. North American Tunneling 2008 Proceedings

Salimi, A., Rostami, J., Moormann, C. and J. Hassanpour  (2018). Examining feasibility of developing a rock  mass classification for hard rock TBM application  using non-linear regression, regression tree and generic  programming. Geotechn Geol Eng, 36: 1145-1159. https:// doi.org/10.1007/s10706-017-0380-z

Sapigni, M., Berti, M., Behtaz, E., Busillo, A. and G. Cardone  (2002). TBM performance estimation using rock mass  classification. Int. J. Rock Mech. Min. Sci., 39: 771-788.

Seo, Y., Macias, F.J., Jakobsen, P.D. et al. (2018). Influence of  Subjectivity in Geological Mapping on the Net PenetrationRate Prediction for a Hard Rock TBM. Rock Mech Rock  Eng, 51: 1599. https://doi.org/10.1007/s00603-018-1408-2

Tarkoy, P.J. (1973). Predicting TBM penetration rates in  selected rock types. In: Proceedings, 9th Canadian Rock  Mechanics Symposium, Montreal.

Thuro, K. and R.J. Plinninger (2003). Hard rock tunnel  boring, cutting, drilling and blasting: Rock parameters  for excavatability. In: Proceedings of the 10th ISRM  International Congress on Rock Mechanics, Johannesburg,  South Africa.

Yagiz, S. (2017). New equations for predicting the field  penetration index of tunnel boring machines in fractured  rock mass. Arab J Geosci, 10(2): 33. https://doi. org/10.1007/s12517-016-2811-1

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing