AccScience Publishing / AJWEP / Volume 16 / Issue 1 / DOI: 10.3233/AJW190011
RESEARCH ARTICLE

Nanoparticles Based Adsorbent for Removal of Arsenic from Aqueous Solution

Anushree Srivastava1 Kaliaperumal Selvaraj2 Kumar Suranjit Prasad2*
Show Less
1 Centre of Environmental Studies, Faculty of Science, University of Allahabad, Allahabad – 211002, India
2 Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory Council of Scientific and Industrial Research, Pune – 411008, India
AJWEP 2019, 16(1), 97–103; https://doi.org/10.3233/AJW190011
Submitted: 18 April 2018 | Revised: 18 December 2018 | Accepted: 18 December 2018 | Published: 10 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Arsenic is a metalloid which poses a risk on water quality, a severe health problem for human and  serious impact on environment. Occurrence of arsenic in natural environment may be due to natural processes or  due to anthropogenic activities. Removal of arsenic can be done by many different techniques like adsorption,  precipitation, flotation, ion exchange etc. Among them adsorption is widely used for removal of heavy metals from  water due to its simplicity; also it’s cost effective. The aim of the study is to evaluate the potential of nanoadsorbent  for arsenic removal. A number of potent adsorbent have been developed from metal, carbon and oxide based  nanoparticle for enhancing the adsorption capacity and removal capacity of arsenic from aqueous solution. A short  overview of nanoadsorbent for arsenic removal from aqueous solution has been discussed in this review article.

Keywords
Arsenic
nanoparticle
adsorption
precipitation
ion exchange.
Conflict of interest
The authors declare they have no competing interests.
References

Aillon, K.L., Xie, Y., El-gendy, N., Berkland, C.J.  and M.L.Forrest (2009). Effects of nanomaterialphysicochemical properties on in vivo toxicity. Adv. Drug  Deliv. Rev., 61: 457–466. 

Allena, S.J., Mckay, G. and J.F. Porter (2004). Adsorption  isotherm models for basic dye adsorption by peat in single  and binary component systems. J. Colloid Interface Sci.,  280: 322–333. 

Banerjee, S.S. and D.H. Chen (2007). Fast removal of copper  ions by gum arabic modified magnetic nano-adsorbent. J.  Hazard. Mater., 147: 792–799. 

Bulut, E. (2008). Adsorption of malachite green onto  bentonite: Equilibrium and kinetic studies and process  design. 115: 234–246. 

Chaker, M. (2008). Applicability of some statistical tools  to predict optimum adsorption isotherm after linear and  non-linear regression analysis. J. Hazard. Mater., 153: 207–212. 

Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C. and  K.S. Kim (2010). Water-Dispersible Magnetite-Reduced  Graphene Oxide Composites for Arsenic Removal. ACS  Nano, 4: 3979–3986. 

Chen, X. and S.S. Mao (2007). Titanium Dioxide  Nanomaterials: Synthesis, Properties, Modifications and  Applications. Chem. Rev., 107: 2891–2959. 

Chiavola, A., Amato, E.D., Stoller, M. and A. Chianese  (2016). Application of Iron Based Nanoparticles as  Adsorbents for Arsenic Removal from Water. Chem. Sci.  Trans., 47: 325–330.

Choong, T.S.Y., Chuah, T.G., Robiah, Y., Gregory Koay,  F.L. and I. Azni (2007). Arsenic toxicity, health hazards  and removal techniques from water: An overview.  Desalination, 217: 139–166. 

Demirbasa, E. and M.K.A.E. Kobya (2008). Error analysis of  equilibrium studies for the almond shell activated carbon  adsorption of Cr(VI) from aqueous solutions. J. Hazard.  Mater., 154: 787–794.

Di Natale, F., Erto, A., Lancia, A. and D. Musmarra (2008).  Experimental and modelling analysis of As(V) ions  adsorption on granular activated carbon. Water Res., 42: 2007–2016.  

Febrianto, J., Natasia, A., Sunarso, J., Ju, Y., Indraswati, N.  and S. Ismadji (2009). Equilibrium and kinetic studies in  adsorption of heavy metals using biosorbent: A summary  of recent studies. J. Hazard. Mater., 162: 616–645. 

Feng, L., Cao, M., Ma, X., Zhu, Y. and C. Hu (2012).  Superparamagnetic high-surface-area Fe3 O4  nanoparticles  as adsorbents for arsenic removal. J. Hazard. Mater.,  217–218: 439–446. 

Foo, K.Y. and B.H. Hameed (2010). Insights into the  modeling of adsorption isotherm systems. Chem. Eng.  J., 156: 2–10. 

Gangadhar, G. and U. Maheshwari (2012). Application of  Nanomaterials for the Removal of Pollutants from Effluent  Streams. Nanosci. Nanotechnology-Asia, 2: 140–150. 

Gupta, K., Bhattacharya, S., Chattopadhyay, D.,  Mukhopadhyay, A., Biswas, H., Dutta, J., Ray, N.R. andU.C. Ghosh (2011). Ceria associated manganese oxide  nanoparticles: Synthesis, characterization and arsenic(V)  sorption behavior. Chem. Eng. J., 172: 219–229. 

Hughes, J.P., Polisar, L. and G.Van Belle (1988). Evaluation  and Synthesis of Health Effects Studies of Communities  Surrounding Arsenic Producing Industries. Int. J.  Epidemiol., 17: 407–413.

Jing, C., Meng, X., Calvache, E. and G. Jiang (2009).  Remediation of organic and inorganic arsenic contaminated  groundwater using a nanocrystalline TiO2 -based adsorbent.  Environ. Pollut., 157: 2514–2519. 

Jossens, L., Prausnitz, J.M., Fritz, W., Schlünder, E.U. and  A.L. Myers (1978). Thermodynamics of multi-solute  adsorption from dilute aqueous solutions. Chem. Eng.  Sci., 33: 1097–1106. 

Ko, R.J. and R. Ko (1999). Causes, Epidemiology, and  Clinical Evaluation of Suspected Herbal Poisoning. J.  Toxicol. Clin. Toxicol., 37: 697–708. 

Luo, T., Cui, J., Hu, S., Huang, Y. and C. Jing (2010). Arsenic  Removal and Recovery from Copper Smelting Wastewater  Using TiO2 . Environ. Sci. Technol., 44: 9094–9098.

  Mauter, M.S. and M. Elimelech (2008). Environmental  Applications of Carbon-Based Nanomaterials. Environ.  Sci. Technol., 42: 5843–5859. 

Morin-crini, N. and P. Badot (2008). Adsorption isotherm  models for dye removal by cationized starch-based  material in a single component system: Error analysis. J.  Hazard. Mater., 157: 34–46.

Ng, J.C.Y., Cheung, W.H. and G. Mckay (2002). Equilibrium  Studies of the Sorption of Cu ( II ) Ions onto Chitosan. J.  Colloid Interface Sci., 74: 64–74. 

Ng, K.S., Ujang, Z. and P. Le-Clech (2004). Arsenic removal  technologies for drinking water treatment. Rev. Environ.  Sci. Bio/Technology, 3: 43–53. 

Patnukao, P., Kongsuwan, A. and P. Pavasant (2008). Batch  studies of adsorption of copper and lead on activated  carbon from Eucalyptus camaldulensis Dehn. bark. J.  Environ. Sci., 20: 1028–1034.

Prasad, K.S., Gandhi, P. and K. Selvaraj (2014). Synthesis  of green nano iron particles (GnIP) and their application  in adsorptive removal of As(III) and As(V) from aqueous  solution. Appl. Surf. Sci., 317: 1052–1059. 

Rahman, M., Tondel, M., Ahmad, S.A. and O. Axelson  (1998). Diabetes mellitus associated with arsenic exposure  in Bangladesh. Am. J. Epidemiol., 148: 198–203. 

Saha, J.C.J., Dikshit, A.K.A., Bandyopadhyay, M. and K.C.  Saha (1999). A Review of Arsenic Poisoning and its  Effects on Human Health. Crit. Rev. Environ. Sci. Technol. 29: 281–313.

Selvi, K., Pattabhi, S. and K. Kadirvelu (2001). Removal of  Cr (VI) from aqueous solution by adsorption onto activated  carbon. Bioresour. Technol., 80: 89–91.

Singh, N., Kumar, D. and A.P. Sahu (2007). Arsenic in  the environment: Effects on human health and possible  prevention. J. Environ. Bio., 28: 359–365.

Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B. and  I.M. Mishra. (2006). Adsorptive removal of phenol by  bagasse fly ash and activated carbon: Equilibrium, kinetics  and thermodynamics. Colloids Surfaces A Physicochem.  Eng. Asp., 272: 89–104. 

Thompson, G., Swain, J., Kay, M. and C.F. Forster (2001).  The treatment of pulp and paper mill effluent: A review.  Bioresour. Technol., 77: 275–286.

Trivedi, P. and L. Axe (1999). A Comparison of Strontium  Sorption to Hydrous Aluminum, Iron, and Manganese  Oxides. J. Colloid Interface Sci., 218: 554–563. 

Tuutijärvi, T., Vahala, R., Sillanpaa, M. and G. Chen (2012).  Maghemite nanoparticles for As(V) removal: Desorption  characteristics and adsorbent recovery. Environ. Technol.,  33: 1927–1936.

Wang, S.L., Chiou, J.M., Chen, C.J., Tseng, C.H., Chou,  W.L., Wang, C.C., Wu, T.N. and L.W. Chang (2003).  Prevalence of non-insulin-dependent diabetes mellitus  and related vascular diseases in southwestern arseniasisendemic and nonendemic areas in Taiwan. Environ. Health  Perspect., 111: 155–159.

Wong, S.S., Tan, K.C. and C.L. Goh (1998). Cutaneous  manifestations of chronic arsenicism: Review of seventeen  cases. J. Am. Acad. Dermatol., 38: 179–185. 

Xia, Y. and J. Liu (2004). An overview on chronic arsenism  via drinking water in PR China. Toxicology, 198: 25–29.  Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C.,  Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M.,  Natelson, D. and V.L. Colvin (2006). Low-Field Magnetic  Separation of Monodisperse Fe3 O4 Nanocrystals. Science,  80-. ). 314, 964 LP-967.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing