AccScience Publishing / AJWEP / Volume 16 / Issue 1 / DOI: 10.3233/AJW190009
RESEARCH ARTICLE

Removal of Phenol from Sewage Effluent Using Activated  Sludge Coupled with Photo-oxidation Process

Salam K . Al-Dawery1* Sajjala Sreedhar Reddy1 Khamis Al Riyami1 Zainab Said Nasser1
Show Less
1 College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman
AJWEP 2019, 16(1), 81–89; https://doi.org/10.3233/AJW190009
Submitted: 10 April 2018 | Revised: 10 September 2018 | Accepted: 10 September 2018 | Published: 10 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Treatment of hazardous phenolic substances that are discharged to environment has a significant interest  since decades. Biological treatment using freely suspended sludge is the most economical treatment method, but,  is considered inactive for treatment of phenolic substances due to the complexity in their chemical structure. The  degradation of phenol was experimentally investigated using separate and coupled biological and photo-catalytic  processes. The degradation was carried out at different concentrations of phenol from 10 to 100 ppm. The results  showed no degradation of phenol using biological treatment, and as expected, the bacterial colony growth was  reduced by 50 percent due to lack of nutrient. The results of photo-catalytic process using titanium dioxide (TiO2)  indicated the removal of 80 percent of phenol especially for concentration below 40 ppm. Bacterial colony growth  during photo-oxidation test was dramatically reduced and no colony growth was found after 90 minutes after  commencing time of experiment. On this basis, the results of using the combined advanced oxidation process  with biological treatment, suggested that the photo-catalytic process would be considered as a post-treatment to  the biological process.

Keywords
Phenol degradation
photo-oxidation
wastewater
activated sludge.
Conflict of interest
The authors declare they have no competing interests.
References

Al-Dawery, S.K. (2013). Photocatalyzed degradation of  tartrazine in wastewater using TiO2 and UV Light. J.  Engineering Science & Technology, 8(6): 693-702.

Al-Dawery, S.K. (2016a). Adsorption of methanol from  methanol–water mixture by activated carbon and itsregeneration using photo-oxidation process. Desalination  and Water Treatment, 57(7): 3065-3073.

Al-Dawery, S.K. (2016b). Enhanced dynamics characterization  of photocatalytic decolorization of hazardous dye  Tartrazine using titanium dioxide. Desalination and Water  Treatment, 57(19): 8863-8871.

Al-Dawery, S.K. (2017). Degree of Flocculation and  Interparticles Charges of Conditioned Municipal Activated  Sludge using Mixed Polymers. Journal of Macromolecular  Science, Part B, 56(8): 578-594.

Arabzadeh, N., Khosravi, A., Mohammadi, A. and N.M.  Mahmoodi (2016). Enhanced photo degradation of  hazardous tartrazine by composite of nanomolecularly  imprinted polymer nanophotocatalyst with high efficiency.  Desalination and Water Treatment, 57(7): 3142-3151.

Bevilaqua, J.V., Cammarota, M.C., Freire, D.M.G. and G.L.  Sant’Anna Jr. (2002). Phenol removal through combined  biological and enzymatic treatments. Braz. J. Chem. Eng.,  19(2): 151-158. 

CHEMTREC (2008). Material Safety Data Sheet,  Ethynylcyclopropane, MSDS No. 000052T, Organic  Technologies, 1245 South 6th Street, Coshocton, Ohio  43812, USA (2018). Available from: https://www. chemblink.com/MSDS/MSDSFiles/6746-94-7_Fisher%20 Scientific.pdf

Chen, X., Choing, S.N., Aschaffenburg, D.J., Pemmaraju,  C.D., Prendergast, D. and T. Cuk (2017). The Formation  Time of Ti–O• and Ti–O•–Ti Radicals at the n-SrTiO3 / Aqueous Interface during Photocatalytic Water Oxidation.  J. Am. Chem. Soc., 139(5): 1830-1841.

Chung, K.T., Wong, T.Y., Huang, Y.W. and Y. Lin (1998).  Tannins and human health: A review. Crit. Rev. Food  Sci., 38: 421-464.

EPA (2014). Emergency Planning and Community Rightto-Know Act (EPCRA) Section 313 chemical list for  reporting year 2014. Available from: https://search.epa. gov/epasearch/epasearch?querytext=phenol+toxicity&are aname=&areacontacts=&areasearchurl=&typeofsearch=e pa&result_template=2col.ftl (2018).

Farhngdoost, M. and Y. Tahery (2010). Isolation and  identification of phenol degradating bacteria from lake  parishan and their growth kinetic assay. African Journal  of Biochemistry, 9(40): 6721-6726. 

Ikawa, M., Schaper, T.D., Dollard, C.A. and J.J. Sasner  (2003). Tilization of Folin–Ciocalteu phenol reagent for  the detection of certain nitrogen compounds. J Agric Food  Chem., 5(7): 1811-1815.

Karam, J. and J.A. Nicell (1997). Potential Applications  of Enzymes in Waste Treatment. Journal of Chemical  Technology and Biotechnology, 69: 141-149. 

Klibanov, A.M., Alberti, B.N., Morris, E.D. and L.M. Felshin  (1980). Enzymatic removal of toxic phenols and anilines  from waste waters. Journal of Applied Biochemistry, 2: 414-419.

Kulkarni, S.J. and J.P. Kaware (2013). Review on Research  for Removal of Phenol from Wastewater. International  Journal of Scientific and Research Publications, 3(4): 1-5.

Laoufi, N.A., Tassalit, D. and F. Bentahar (2008). The  degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Global NEST Journal,  10(3): 404-418.

Marrot, B., Martinez, B.A., Moulin, P. and N. Roche (2006).  Biodegradation of high phenol concentration by activated  sludge in an immersed membrane bioreactor. Biochemical  Engineering Journal, 30: 174-183.

Mohite, B.V., Jalgaonwala, R.E., Pawar, S. and A. Morankar  (2007). Isolation and characterization of phenol degrading  bacteria from oil contaminated soil. Innovative Romanian  Food Biotechnology, 7: 61-65.

Movahedyan, H., Khorsandi, H., Salehi, R. and M. Nikaeen  (2009). Detection of phenol degrading bacteria and  pseudomonas putida in activated sludge by polymerase  chain reaction. Iran J. Environ. Health. Sci. Eng., 6(2): 115-120. 

NPRI Canada (2017). National Pollutant Release Inventory  Substance List. Available from:  https://ec.gc.ca/inrp-npri/default.asp?lang=En&n=  E2BFC2DB-1, (2018).

Oller, I., Malato, S., Sánchez-Pérez, J.A., Gernjak, W.,  Maldonado, M.I., Pérez-Estrada, L.A. and C. Pulgarín  (2007). A combined solar photocatalytic-biological field  system for the mineralization of an industrial pollutant at  pilot scale. Catalysis Today, 122: 150-159.

Przyblewsk, K., Wieczorek, A., Nowak, A. and M.  Pochrzaszcz (2006). The isolation of microorganisms  capable of phenol degradation. Polish Journal of  Microbiology, 55(1): 63-67. 

Saien, J. and A.R. Soleymani (2007). Degradation and  mineralization of direct blue 71 in a circulating upflow  reactor by UV/TiO2. J. Hazard. Mater., 144: 506-512. 

Shanthini, S., Liu, H., Nguyen T.V. and S. Vigneswaran  (2011). Organic matter removal from biologically treated  sewage effluent by flocculation and oxidation coupled  with flocculation. Desalination and Water Treatment, 32: 133-137.

Soudi, M.R. and N. Kolahchi (2010). Bioremediation potential  of a phenol degrading bacterium Rhodococcuserythropolis  SKO-1. Prog. Biol. Sci., 1(1): 31- 40. 

Sun, X., Wang, C., Li, Y., Wang, W. and J. Wei (2015).  Treatment of phenolic wastewater by combined UF and  NF/RO processes. Desalination, 355: 68-74.

Tziotzios, G., Liberatos, G. and D.V. Vayenas (2005).  Biological Phenol Removal. Proceedings of 9th  international Conference on Environmental Science and  Technology, Rhodes island, Greece. 1-3, September.

Villegas, C.L.G., Mashhadi, N., Chen, M., Mukherjee, D.,  Taylor, K.E. and N. Biswas (2016). A Short Review ofTechniques for Phenol Removal from Wastewater. Curr .  Pollution Rep., 2: 157-167.

Wilberg, K.Q., Nunes, D.G. and J. Rubio (2000). Removal  of phenol by enzymatic oxidation and flotation. Braz. J.  Chem. Eng., 17: 4-7.

Yong, T., Chang, Y.W. and D.W. Mazyck (2006). Removal  of methanol from pulp and paper mills using combined  activated carbon adsorption and photocatalytic regeneration.  Chemosphere, 65: 35-42.

Znad, H., Kasahara, N. and Y. Kawase (2006). Biological  decomposition of herbicides (EPTC) by activated sludge in  slurry bioreactor. Process Biochemistry, 41(5): 1124-1128

Wang, Z., Bush, R.T., Sullivan, L.A., Chen, C. and J. Liu  (2014). Semiconductor heterojunction photocatalysts:  Design, construction, and photocatalytic performances.  Environmental Science & Technology, 48: 3978-3985.

Qi, C., Liu, X., Li, Y., Lin, C., Ma, J., Li, X. and H. Zhang  (2017). Enhanced degradation of organic contaminants in  water by peroxydisulfate coupled with bisulfite. Journal  of Hazardous Materials, 328: 98-107.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing