AccScience Publishing / AJWEP / Volume 19 / Issue 5 / DOI: 10.3233/AJW220069
RESEARCH ARTICLE

The Impact of COVID-19 Infection on Prognostic Effect  of Liver Laboratory Markers and Disease Outcome

Randa R. Ghamyes1* Hayjaa M. Alhamadani2 Mohammed I. Rasool2
Show Less
1 Department of Medical Laboratory Techniques, College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Kerbala, Kerbala, Iraq
AJWEP 2022, 19(5), 37–42; https://doi.org/10.3233/AJW220069
Submitted: 2 August 2022 | Revised: 17 August 2022 | Accepted: 17 August 2022 | Published: 16 September 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Severe acute respiratory syndrome-related coronavirus 2 (SARS- CoV-2) is a viral pathogen that causes  coronavirus disease 2019 (COVID-19). Angiotensin-converting enzyme 2 (ACE2), as a receptor, is crucial for  SARS-CoV-2 to get access into the host cells. According to reports, ACE2 is expressed in the liver, placenta, heart,  lungs and kidneys. This study sought to gain unique insights into the features of liver indicators in individuals  suffering from COVID-19 disease in order to enhance their therapeutic care. The study groups included 50 people  diagnosed with COVID-19 infection in the patient’s group and 25 healthy people without any systemic diseases  in the control group. Human serum samples were used to measure liver function enzymes, CRP, D dimer, and  ferritin all samples by using automated quantitative tests. The results revealed a statically significant difference  between AST, ALP, TSB, and study groups, where it is found that the mean levels of AST (88.04±33.00) and ALP  (99.61±41.93) were high in patients than in controls, while the mean levels of TSB were low in patients (0.51±0.21)  than the controls. A significant difference was also obtained for each ferritin, CRP, and D dimer between the study  groups, where it found the mean concentrations of D dimer, ferritin and CRP, i.e., 1208.09±667.32, 60.53±23.91  and 204.52±90.62, respectively, were high in the patient’s group than in controls.

Keywords
COVID-19
angiotensin-converting enzyme 2
liver
liver injury
liver enzymes.
Conflict of interest
The authors declare they have no competing interests.
References

Bangash, M.N., Patel, J. and D. Parekh (2020). COVID-19  and the liver: Little cause for concern. The Lancet:  Gastroenterology & Hepatology, 5(6): 529.

Chau, T.N., Lee, K.C., Yao, H., Tsang, T.Y., Chow, T.C.,  Yeung, Y.C. and S.T. Lai (2004). SARS‐associated viral hepatitis caused by a novel coronavirus: report of three  cases. Hepatology, 39(2): 302-310.

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. and  Y. Wei (2020). Epidemiological & clinical characteristics  of 99 cases of 2019 novel coronavirus pneumonia  in Wuhan, China: A descriptive study. The Lancet,  395(10223): 507-513.

Chen, W., Zheng, K.I., Liu, S., Yan, Z., Xu, C. and Z. Qiao  (2020). Plasma CRP level is positively associated with the  severity of COVID-19. Annals of Clinical Microbiology  and Antimicrobials, 19(1): 1-7.

Colafrancesco, S., Alessandri, C., Conti, F. and R. Priori  (2020). COVID-19 gone bad: A new character in  the spectrum of the hyperferritinemic syndrome?  Autoimmunity Reviews, 19(7): 102573.

Drakesmith, H. and A. Prentice (2008). Viral infection and  iron metabolism. Nature Reviews Microbiology, 6(7): 541-552.

Essa, R.A., Ahmed, S.K., Bapir, D.H. and C.P. Abubakr  (2021). Hyperbilirubinemia with mild COVID-19 patient:  A case report. International Journal of Surgery Case  Reports, 82: 105958.

Faiq, T.N., Ghareeb, O.A. and M.F. Fadhel (2021).  Characteristics and outcomes of COVID 19 patients in  Kirkuk City, Iraq. Annals of the Romanian Society for  Cell Biology, 25(4): 12432-12438.

Fan, Z., Chen, L., Li, J., Cheng, X., Yang, J., Tian, C. and  J. Cheng (2020). Clinical features of COVID-19-related  liver functional abnormality. Clinical Gastroenterology  and Hepatology, 18(7): 1561-1566.

Fu, J., Kong, J., Wang, W., Wu, M., Yao, L., Wang, Z.,  and X. Yu. (2020). The clinical implication of dynamic  neutrophil to lymphocyte ratio and D-dimer in COVID-19:  A retrospective study in Suzhou China. Thrombosis  Research, 192: 3-8.

Gebhard, C., Regitz-Zagrosek, V., Neuhauser, H.K., Morgan,  R. and S.L. Klein (2020). Impact of sex and gender  on COVID-19 outcomes in Europe. Biology of Sex  Differences, 11: 1-13.

Gemmati, D., Bramanti, B., Serino, M.L., Secchiero, P., Zauli,  G. and V. Tisato (2020). COVID-19 and individual genetic  susceptibility/receptivity: Role of ACE1/ACE2 genes,  immunity, inflammation and coagulation. Might the double  X-chromosome in females be protective against SARSCoV-2 compared to the single X-chromosome in males?  International Journal of Molecular Sciences, 21(10): 3474.

Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M.,  Cabrini, L., Castelli, A. and E. Zoia (2020). Baseline  characteristics and outcomes of 1591 patients infected with  SARS-CoV-2 admitted to ICUs of the Lombardy Region,  Italy. JAMA, 323(16): 1574-1581.

Harmer, D., Gilbert, M., Borman, R. and K.L. Clark (2002).  Quantitative mRNA expression profiling of ACE 2, a  novel homologue of angiotensin converting enzyme. FEBS  Letters, 532(1-2): 107-110.

Herold, T., Jurinovic, V., Arnreich, C., Lipworth, B.J.,  Hellmuth, J.C., von Bergwelt-Baildon, M. and T.Weinberger (2020). Elevated levels of IL-6 and CRP  predict the need for mechanical ventilation in COVID-19.  Journal of Allergy and Clinical Immunology, 146(1): 128-136.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. and  X. Gu (2020). Clinical features of patients infected with  2019 novel coronavirus in Wuhan, China. The Lancet,  395(10223): 497-506.

Huang, I., Pranata, R., Lim, M.A., Oehadian, A. and B.  Alisjahbana (2020). C-reactive protein, procalcitonin,  D-dimer, and ferritin in severe coronavirus disease-2019:  A meta-analysis. Therapeutic Advances in Respiratory  Disease, 14: 1753466620937175.

Hussein, A.M., Taha, Z.B., Malek, A.G., Rasul, K.A., Hazim,  D.Q., Ahmed, R.J. and U.B. Mohamed (2021). D-dimer  and serum ferritin as an independent risk factor for severity  in COVID-19 patients. Materials Today: Proceedings (In  Press).

Hwaiz, R., Merza, M., Hamad, B., HamaSalih, S.,  Mohammed, M. and H. Hama (2021). Evaluation of  hepatic enzymes activities in COVID-19 patients.  International Immunopharmacology, 97: 107701.

Jakhmola, S., Baral, B. and H.C. Jha (2021). A comparative  analysis of COVID-19 outbreak on age groups and both  the sexes of population from India and other countries. The  Journal of Infection in Developing Countries, 15(03): 333-341.

Kaushal, K., Kaur, H., Sarma, P., Bhattacharyya, A., Sharma,  D.J., Prajapat, M., Pathak, M., Kothari, A., Kumar, S.,  Rana, S., Kaur, M., Prakash, A., Mirza, A.A., Panda,  P.K., Vivekanandan, S., Omar, B.J., Medhi, B. and M.  Naithani (2022). Serum ferritin as a predictive biomarker  in COVID-19. A systematic review, meta-analysis, and  meta-regression analysis. Journal of Critical Care, 67: 172-181.

Koozi, H., Lengquist, M. and A. Frigyesi (2020). C-reactive  protein as a prognostic factor in intensive care admissions  for sepsis: A Swedish multicenter study. Journal of Critical  Care, 56: 73-79.

Li, H., Xiang, X., Ren, H., Xu, L., Zhao, L., Chen, X. and Q.  Wu (2020). SAA is a biomarker to distinguish the severity  and prognosis of coronavirus disease 2019 (COVID-19).  The Journal of Infection, 80(6): 646-655.

  Lin, L., Lu, L., Cao, W. and T. Li (2020). Hypothesis for  potential pathogenesis of SARS-CoV-2 infection–A review  of immune changes in patients with viral pneumonia.  Emerging Microbes & Infections, 9(1): 727-732.

Marabotto, E., Ziola, S. and E. Giannini (2020). COVID-19  and liver disease: Not all evil comes to harm. Liver  International, 41(1): 237-238.

Mizumoto, K., Kagaya, K., Zarebski, A. and G. Chowell  (2020). Estimating the asymptomatic proportion of  coronavirus disease 2019 (COVID-19) cases on board the  Diamond Princess cruise ship, Yokohama, Japan, 2020.  Eurosurveillance, 25(10): 2000180.

Nardo, A.D., Schneeweiss‐Gleixner, M., Bakail, M., Dixon, E.D., Lax, S.F. and M. Trauner (2021). Pathophysiological  mechanisms of liver injury in COVID‐19. Liver  International, 41(1): 20-32.

Piano, S., Dalbeni, A., Vettore, E., Benfaremo, D., Mattioli,  M., Gambino, C.G. and COVID‐LIVER study group (2020). Abnormal liver function tests predict transfer  to intensive care unit and death in COVID‐19. Liver  International, 40(10): 2394-2406.

Pirola, C.J. and S. Sookoian (2020). COVID-19 and ACE2  in the liver and gastrointestinal tract: Putative biological  explanations of sexual dimorphism. Gastroenterology, 159(4): 1620.

Pringle, K., Tadros, M., Callister, R. and E. Lumbers (2011).  The expression and localization of the human placental  prorenin/renin-angiotensin system throughout pregnancy:  Roles in trophoblast invasion and angiogenesis? Placenta,  32(12): 956-962. 

Robert Koch Institute (2020). Coronavirus disease 2019  (COVID-19): Daily situation report of the Robert Koch  Institute.

Saber-Ayad, M., Saleh, M.A. and E. Abu-Gharbieh (2020).  The rationale for potential pharmacotherapy of COVID-19.  Pharmaceuticals, 13(5): 96.

Siddiqi, H.K. and M.R. Mehra (2020). COVID-19 illness  in native and immunosuppressed states: A clinical– therapeutic staging proposal. The Journal of Heart and  Lung Transplantation, 39(5): 405.

Sohrabi, C., Alsafi, Z., O’neill, N., Khan, M., Kerwan, A., AlJabir, A., and R. Agha (2020). World Health Organization  declares global emergency: A review of the 2019 novel  coronavirus (COVID-19). International Journal of  Surgery, 76: 71-76.

Soltani, S., Zakeri, A.M., Karimi, M.R., Rezayat, S.A.,  Anbaji, F.Z., Tabibzadeh, A. and M. Norouzi (2020).  A systematic literature review of current therapeutic  approaches for COVID-19 patients. J. Pharm. Res. Int.,  32(7): 13-25. 

Sproston, N.R. and J.J. Ashworth (2018). Role of C-reactive  protein at sites of inflammation and infection. Frontiers  in Immunology, 9: 754.

Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R.,  Litvinukova, M. and F. Sampaziotis (2020). SARS-CoV-2  entry factors are highly expressed in nasal epithelial cells  together with innate immune genes. Nature Medicine, 2: 681-687. 

Thachil, J., Tang, N., Gando, S., Falanga, A., Cattaneo,  M., Levi, M. and T. Iba (2020). ISTH interim guidance  on recognition and management of coagulopathy in  COVID‐19. Journal of Thrombosis and Haemostasis,  18(5): 1023-1026

Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z. and  S. Zhang (2020). The use of anti-inflammatory drugs in the  treatment of people with severe coronavirus disease 2019  (COVID-19): The perspectives of clinical immunologists  from China. Clinical Immunology, 214: 108393.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing