AccScience Publishing / AJWEP / Volume 21 / Issue 3 / DOI: 10.3233/AJW240035
RESEARCH ARTICLE

Hybrid Approach-Based Placement of Micro-Phasor  Measurement Units in Active Distribution Networks

Surinder Chauhan1* Ranjan Walia2 Amandeep Gill2
Show Less
1 Apex Institute of Technology (CSE), Chandigarh University, Chandigarh, India
2 Department of Electrical Engineering, Chandigarh University, Chandigarh, India
AJWEP 2024, 21(3), 61–69; https://doi.org/10.3233/AJW240035
Submitted: 31 July 2023 | Revised: 13 January 2024 | Accepted: 13 January 2024 | Published: 4 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The placement of monitoring devices like micro-Phasor Measurement Unit (µPMU), which works 24  hours, at all nodes in the distribution system, is contributing to temperature rise. This temperature rise can be  reduced by placing the µPMUs at selected nodes. Therefore, this paper depicted a hybrid approach for µPMUs  optimal placement in the distribution system. Optimal placement recognises the placement set containing the least  number of µPMUs with optimum redundancy with which the phasors of voltage, as well as the current, can be  calculated at each bus of the system. Constraints such as communication link unavailability, zero injection buses,  and network reconfiguration are considered in the optimal µPMU placement formulation. The proposed approach  overcomes the downside of Integer Linear Programming (ILP) which provides a single optimal location set. The  proposed approach automatically assigned µPMUs to buses connected to radial buses, established by the degree  of each bus, and reduces the computational concern. Provided algorithm efficiency is checked out with IEEE 40  bus feeder and IEEE 85 bus feeder system under Matlab/Simulink environment.

Keywords
Binary search method
integer linear programming
micro-phasor measurement unit.
Conflict of interest
The authors declare they have no competing interests.
References

Chauhan, K. and R. Sodhi (2019). Placement of distributionlevel phasor measurements for topological observability  and monitoring of active distribution networks. IEEE  Transaction on Instrumentation and Measurement, 69(6): 3451-3460.

De La Ree, J., Centeno, V., Thorp, J.S. and A.G. Phadke  (2010). Synchronized phasor measurement applications  in power systems. IEEE Transaction on Smart Grid,  1(1): 20-27.

Dua, D., Dambhare, S., Gajbhiye, R.K. and S.A. Soman  (2008). Optimal multistage scheduling of PMU placement:  An ILP approach. IEEE Transaction on Power Delivery,  23(4): 1812-1820.

Gill, A., Singh, P., Jobanputra, J.H. and M.L. Kolhe  (2022). Placement analysis of combined renewable and  conventional distributed energy resources within a radial  distribution network. AIMS Energy, 10(6): 1216-1229.

Gou, B. (2008). Generalized integer linear programming  formulation for optimal PMU placement. IEEE Transaction  on Power System, 23(3): 1099-1104.

Lee, H., Tushar, B., Cui, A., Mallikeswaran, P., Banerjee, P.  and A.K. Srivastava (2017). A review of synchrophasor  applications in smart electric grid. Wiley Interdiscip. Rev.  Energy Environment, 6(3): e223.

Liu, J., Tang, J., Ponci, F., Monti, A., Muscas, C., and P.A.  Pegoraro (2012). Trade-offs in PMU deployment for state  estimation in active distribution grids. IEEE Transaction  on Smart Grid, 3(2): 915-924.

Liu, J., Ponci, F., Monti, A., Muscas, C., Pegoraro. P. A.  and S. Sulis (2014). Optimal meter placement for robust  measurement systems in active distribution grids. IEEE  Trans. on Instrumentation and Measurement, 63(5):1096- 1105.

Martin, K.E., Brunello, G. and M.G. Adamaik (2014).  An overview of the IEEE Standard C37.118.2-2011-  synchrophasor data transfer for power systems. IEEE  Transaction on Smart Grid, 5(4): 1980-1984.

Mohamed, M.A., Al-Sumaiti, A.S., Krid, M., Awwad, E.M.  and A. Kavousi-Fard (2019). A reliability-oriented fuzzy  stochastic framework in automated distribution grids to  allocate μ -PMUs. IEEE Access, 7(1): 33393-33404.

Pinte, B., Quinlan, M. and K. Reinhard (2015). Low  voltage micro-phasor measurement unit (μPMU), In:  2015 IEEE Power and Energy Conference at Illinois  (PECI), Champaign, IL, USA, pp. 1-4, doi: 10.1109/ PECI.2015.7064888. Phadke, A.G. (1993). Synchronized  phasor measurement in power systems. IEEE Computer  Applications in Power, 6(2):10-15.

Santos, S.F., Fitiwi, D.Z., Cruz, M.R.M., Cabrita, C.M.P. and  J.P.S. Catalão (2016). Impacts of optimal energy storage  deployment and network reconfiguration on renewable  integration level in distribution systems. Applied Energy,  185 (2): 44-55.

Singh, S.P. and S.P. Singh (2017). Optimal cost wide area  measurement system incorporating communication  infrastructure. IET Generation Transmission Distribution,  11(11): 2814-2821.

Singh, M. and K. Singh (2022). Adaptive protection of  microgrid through abrupt change analysis and fractional  Fourier transform. In:16th International Conference on  Developments in Power System Protection (DPSP 2022),  Newcastle, UK.

Su, H., Wang, C., Li, P., Liu, Z., Yu, L. and J. Wu (2019).  Optimal placement of phasor measurement unit in  distribution networks considering the changes in topology.  Applied Energy, 250: 313-322.

Teimourzadeh, S., Aminifa, F. and M. Shahidehpour (2019).  Contingency-constrained optimal placement of microPMUs and smart meters in microgrids. IEEE Transaction  on Smart Grid, 10(2): 1889-1897.

Theodorakatos, N.P., Manousakis, N.M. and G.N. Korres  (2015). Optimal placement of phasor measurement units  with linear and non-linear models. Electrical Power  Components System, 43(4): 357-373.

Wu, Z. (2018). Optimal PMU placement considering load  loss and relaying in distribution networks. IEEE Access,  6: 33645-33653.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing