AccScience Publishing / AJWEP / Volume 11 / Issue 4 / DOI: 10.3233/AJW-2014-11_4_08
RESEARCH ARTICLE

Use of Heavy Metals and Trace Elements in Groundwater  as a Tool for Mineral Exploration: A Case Study from  Udawalawe, Sri Lanka

D.T. Udagedara1,2* H.M.T.G.A. Pitawala3 H.A. Dharmagunawardhane3
Show Less
1 Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
2 Geosphere Research Institute, Department of Civil Engineering, Saitama University, 255 Shimookubo Sakura Ku, Saitama, 338-8570, Japan
3 Department of Geology, University of Peradeniya, Sri Lanka
AJWEP 2014, 11(4), 59–67; https://doi.org/10.3233/AJW-2014-11_4_08
Submitted: 27 June 2014 | Accepted: 20 August 2014 | Published: 1 January 2014
© 2014 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The geochemistry of regional groundwater has been utilized worldwide to discover subsurface mineral deposits, though it has not yet been practiced in Sri Lanka. The present study focuses on utilizing geochemistry of groundwater in the Udawalawe area of south-central Sri Lanka where two serpentinite bodies exist within the high-grade crystalline basement. This area is in the proximity of the litho-tectonic boundary between two metamorphic complexes. Thus, the scope of the study is to uncover geological and geochemical anomalies of potential mineralization. Mode of occurrences and petrography of exposed serpentinite bodies and physico- chemical properties of groundwater were investigated to establish a relationship between regional groundwater geochemistry and geological anomalies. The pH and electrical conductivity of groundwater were measured in-situ and concentrations of Al, Ba, Be, Cs, Cu, Fe, Li, Mn, Pb, Rb, Sr and Zn were analysed using atomic absorption and emission spectroscopy. The present study reveals that concentrations of these elements are significantly higher close to serpentinite bodies with Cu and Zn having the highest concentrations. Elevated concentrations of Al,Ba, Be, Fe, Li, Pb, Rb and Sr were also noted. Relatively higher concentrations of Be, Cu, Li, Mn, Pb, Rb and Zn in groundwater in the area between the two exposed serpentinite bodies indicate the possible occurrence of a subsurface mineral deposit in the area. These results indicate the importance and feasibility of the application of regional groundwater geochemistry as a tool for uncovering subsurface mineral deposits. Detailed observations of groundwater flow patterns, facies changes, and associated element mobility could effectively help in accurate demarcation of the lateral extents of mineral deposits.

Keywords
Mineral exploration
groundwater geochemistry
heavy metals
trace elements
serpentinite
Conflict of interest
The authors declare they have no competing interests.
References

APHA (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed.

Armiento, G., Bellatreccia, F., Cremisini, C. et al. (2012). Beryllium natural background concentration and mobility: A reappraisal examining the case of high Be-bearing pyroclastic rocks. Environ Monit Assess. doi: 10.1007/ s10661-012-2575-3.

Banks, D., Hall, G., Reimann, C. and U. Siewers (1999). Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions, Norway. Appl. Geochemistry, 14: 27-39.

Bhatia, M.R. and K.A.W. Crook (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib to Mineral Petrol, 92: 181-193. doi: 10.1007/BF00375292.

Biddau, R., Bensimon, M., Cidu, R. and A. Parriaux (2009). Rare earth elements in groundwater from different Alpine aquifers. Chemie der Erde - Geochemistry, 69: 327-339. doi: 10.1016/j.chemer.2009.05.002.

Borovec, Z. (1993). Partitioning of Silver, Beryllium and Molybdenum among Chemical Fractions in the Sediments from the Labe (Elbe) River in Central Bohemia, Czech Rep. GeoJournal, 29: 359-364.

Caron, M., Grasby, S. and M. Cathryn Ryan (2008). Spring water trace element geochemistry: A tool for resource assessment and reconnaissance mineral exploration. Appl. Geochemistry, 23: 3561-3578. doi: 10.1016/j. apgeochem.2008.07.020.

Chandrajith, R., Dissanayake, C. and H. Tobschall (2001). Application of multi-element relationships in stream sediments to mineral exploration: A case study of Walawe Ganga Basin, Sri Lanka. Appl Geochemistry, 16: 339-350.

Cooray, P.G. (1984). An introduction to the geology of Sri Lanka (Ceylon), National Museums of Sri Lanka Publications, Colombo. 2nd ed.

Cooray, P.G. (1994). The precambrian of Sri Lanka: A historical review. Precambrian Res, 66: 3-18. doi: 10.1016/0301-9268(94)90041-8.

Cooray, P.G. and A.R. Berger (1980). Is the Highland-eastern Vijayan boundary in Sri Lanka a possible mineralized belt? discussion. Econ Geol, 75: 774-775. doi: 10.2113/ gsecongeo.75.5.774.

De Caritat, P., Kirste, D., Carr, G. and M. McCulloch (2005). Groundwater in the Broken Hill region, Australia: Recognising interaction with bedrock and mineralisation using S, Sr and Pb isotopes. Appl Geochemistry, 20: 767-787. doi: 10.1016/j.apgeochem.2004.11.003.

Dehnavi, A.G., Sarikhani, R. and D. Nagaraju (2011). Hydro geochemical and rock water interaction studies in East of Kurdistan, N-W of Iran. Int J Environ Sci Res, 1: 16-22.

Deverel, S.J. and S.P. Millard (1988). Distribution and Mobility of Selenium and Other Trace Elements in Shallow Groundwater of the Western San Joaquin Valley, California. Environ Sci Technol, 22: 697-702.

Dissanayake, C.B. (1982). The Geology and Geochemistry of the Uda Walawe Serpentinite, Sri Lanka. J Natl Sci Found Sri Lanka, 10: 13-34.

Dissanayake, C.B. and H.A.H. Jayasena (1988). Origin of geothermal systems of Sri Lanka. Geothermics, 17: 657-
669. doi: 10.1016/0375-6505(88)90050-8.

Dissanayake, C.B. and B.J.V. Riel (1978). A recently discovered nickeliferous serpentinite from Uda Walawe, Sri Lanka. Geol en Mijnb, 57: 91-92.

Dissanayake, C.B. and S.V.R. Weerasooriya (1986). Fluorine as an indicator of mineralization - Hydrogeochemistry of a Precambrian mineralized belt in Sri Lanka. Chem Geol,56: 257-270. doi: 10.1016/0009-2541(86)90007-0.

Féraud, G., Potot, C., Fabretti, J.F. et al. (2009). Trace elements as geochemical markers for surface waters and groundwaters of the Var River catchment (Alpes Maritimes, France). Comptes Rendus Chim, 12: 922-932. doi: 10.1016/j.crci.2009.02.002.

Figueroa, L., Barton, S., Schull, W. and B. Razmilic (2012). Environmental Lithium Exposure in the North of Chile
— I . Natural Water Sources. Biol Trace Elem Res, 149: 280-290.

Hewawasam, T., Fernando, G.W.A.R. and D. Priyashantha (2014). Geo-vegetation mapping and soil geochemical characteristics of the Indikolapelessa serpentinite outcrop, southern Sri Lanka. J Earth Sci, 25: 152-168. doi: 10.1007/ s12583-014-0409-7.

Hiscock, K.M. (2005). Hydrogeology Principles and Practice. Blackwell Scientific Publications, Oxford.

Horstman, E.L. (1957). The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochim Cosmochim Acta, 12: 1-28. doi: 10.1016/0016- 7037(57)90014-5.

Janssen, R.P.T. and W. Verweij (2003). Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, The Netherlands. Water Res, 37: 1320-1350. doi: 10.1016/ S0043-1354(02)00492-X.

Jayawardana, D.T., Pitawala, H.M.T.G.A. and H. Ishiga (2010). Groundwater Quality in Different Climatic Zones of Sri Lanka: Focus on the Occurrence of Fluoride. Int J Environ Sci Dev, 1: 244-250.

Jayawardana, D.T., Pitawala, H.M.T.G.A. and H. Ishiga (2012). Geochemical assessment of soils in districts of fluoride-rich and fluoride-poor groundwater, north-central Sri Lanka. J Geochemical Explor, 114: 118-125.

Johannesson, K.H., Cortés, A., Alfredo, J. et al. (2005). Geochemistry of Rare Earth Elements in Groundwaters from a Rhyolite Aquifer, Central México. In: Johannesson, K.H. (ed.), Rare Earth Elem. Groundw. Flow Syst. Springer.

Kroner, A., Cooray, P.G. and P.W. Vithanage (1991). Lithotectonic subdivision of the Precambrian basement in Sri Lanka. In: Krone, A. (ed.), Crystaline crust Sri Lanka, Part-1. Summ. Res. Ger. Lanka Consort., Prof. Pap. Geological Survey Department of Sri Lanka, Colombo.

Lowrie, W. (2007). Fundamentals of Geophysics, 2nd ed. Cambridge University Press, Cambridge.

Lukibisi, F.B. and T. Lanyasunya (2010). Using principal component analysis to analyze mineral composition data. 12th KARI Bienn. Sci. Conf. KARI.

Marschall, H.R., Pogge von Strandmann, P.A.E., Seitz, H.-M. et al. (2007). The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett,262: 563-580. doi: 10.1016/j.epsl.2007.08.005.

Mclennan, S.M. (2001). Relationship between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophys Geosystems,2: 1-24.

Munasinghe, T. and C.B. Dissanayake (1979). Is the Highland-eastern Vijayan boundary in Sri Lanka a possible mineralized belt? Econ Geol, 74: 1495-1496. 10.2113/ gsecongeo.74.6.1495.

Munasinghe, T. and C.B. Dissanayake (1980). Is the Highland-eastern Vijayan boundary in Sri Lanka a possible mineralized belt? Reply. Econ Geol, 75: 775-777. doi: 10.2113/gsecongeo.75.5.775.

Navarro, A., Font, X. and M. Viladevall (2011). Geochemistry and groundwater contamination in the La Selva geothermal system (Girona, Northeast Spain). Geothermics, 40: 275-285. doi: 10.1016/j.geothermics.2011.07.005.

Navratil, T., Skrivan, P., Rikmina, L. and A. Zigova (2002). Beryllium Geochemistry in the Lesni Potok Catchment
(Czech Republic), 7 Years of Systematic Study. Aquat Geochemistry, 8: 121-134.

Nordstrom, D.K., Ball, J.W., Donahoe, R.J. and D. Whittemore (1989). Groundwater chemistry and water- rock interactions at Stripa. Geochim Cosmochim Acta, 53: 1727-1740. doi: 10.1016/0016-7037(89)90294-9.

Panabokke, C.R. and A.P.G.R.L. Perera (2005). Groundwater Resources of Sri Lanka – A Special Report. Water Resources Board, Colombo.

Pelig-Ba, K.B. (1998). Trace Elements in Groundwater from Some Crystalline Rocks in the Upper Regions of Ghana. Water. Air. Soil Pollut., 103: 71-89.

Pelpitiya, I.P.S.K., Udagedara, D.T. and A.N.B. Attanayake (2012). Geochemical Influences on Sri Lankan Bottled Water. Res. Symp. Uva Wellssa University, Badulla.

Prado, M.C.C.M., Hiscock, K.M., Rajasooriyar, L. and E. Boelee (2010). Application of a combined hydrochemical and stable isotope – Approach to the study of the interaction between irrigation canal water and groundwater in southern Sri Lanka. Int. Symp. Innov. Technol. University of Ruhuna, Kamburupitiya.

Rajakaruna, N. and A.B. Bruce (2002). Serpentine and its Vegetation: A Preliminary Study from Sri Lanka. J Appl Botony, 76: 20-28.

Ranasinghe, P.N., Dissanayake, C.B. and M.S. Rupasinghe (2005). Application of geochemical ratios for delineating gem-bearing areas in high grade metamorphic terrains. Appl. Geochemistry, 20: 1489-1495.

Reimann, C. and M. Birke (2010). Geochemistry of Europian Bottled Water.

Rollings, H.R. (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation, 1st ed.

Ronnback, P., Astrom, M. and J.-P. Gustafsson (2003). Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden. Appl. Geochemistry, 23: 1862-1880. doi: 10.1016/j. apgeochem.2008.02.008.

Roser, B.P. (2000). Whole-rock geochemical studies of clastic sedimentary suites. Mem Geol Soc Japan, 57: 73-89.

Rudnick, R.L. and S. Gao (2003). Composition of the Continental Crust. Treatise on geochemistry, 3: 1-64.

Saxena, V. and S. Ahmed (2001). Dissolution of fluoride in groundwater: A water-rock interaction study. Environ Geol,40: 1084-1087. doi: 10.1007/s002540100290.

Taylor, S.R. and S.M. McLennan (1985). The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford.

Tennakone, K., Senevirathna, M.K.I. and K.V.W. Kehelpannala (2009). Extraction of pure metallic nickel from ores and plants at Ussangoda, Sri Lanka. J Natl Sci Found Sri Lanka, 35: 245-250. doi: 10.4038/jnsfsr.v35i4.1313.

Thamó-Bozsó, E. and L.Ó. Kovács (2007). Evolution of Quaternary to Modern Fluvial Network in the Mid- Hungarian Plain, Indicated by Heavy Mineral Distributions and Statistical Analysis of Heavy Mineral Data. In: Mange, M.A. and Wright, D.T. (eds), Dev. Sedimentol., 58, 1sted. Elsevier B.V.

Tweed, S.O., Weaver, T.R., Cartwright, I. and B. Schaefer (2006). Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: An example from the Dandenong Ranges, southeast Australia. Chem. Geol., 234: 291-307.

Tweed, S.O., Weaver, T.R. and I. Cartwright (2005). Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia. Hydrogeol J, 13: 771-786. doi: 10.1007/s10040-004-0348-y.

Villholth, K.G. and L.D. Rajasooriyar (2009). Groundwater Resources and Management Challenges in Sri Lanka – An Overview. Water Resour Manag, 24: 1489-1513. doi: 10.1007/s11269-009-9510-6.

Vils, F., Müntener, O., Kalt, A. and T. Ludwig (2011). Implications of the serpentine phase transition on the behaviour of beryllium and lithium–boron of subducted ultramafic rocks. Geochim Cosmochim Acta, 75: 1249-
1271. doi: 10.1016/j.gca.2010.12.007.

Willbold, M. and A. Stracke (2006). Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry Geophys Geosystems, 7: 1-30. doi:10.1029/2005GC001005.

Yoon, J. (2010). Lithium as a Silicate Weathering Proxy: Problems and Perspectives. Aquat Geochemistry, 16: 189-206.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing