Groundwater Arsenic in South-East Asia: Extent, Effects and Solutions
Groundwater is a clean source of drinking water. However, the presence of elevated concentrations of inorganic arsenic in groundwater, particularly in the regions of Bangladesh and the eastern part of India, is a cause for concern. Most people residing in this geographic location have no alternative but to drink arsenic contaminated groundwater, which has arsenic concentrations above the permissible limit (0.01 mg/L). As a result, approximately 123 million people in India and Bangladesh face higher risk of cancer, as well as risk other cardiovascular and neurologic diseases. Many techniques for getting rid of arsenic from drinking water are available. In this paper, we focus on the region of eastern India and Bangladesh to examine the extent of arsenic contamination and its toxic effects on humans, explore the sources of arsenic in this geography, and compare and contrast the technologies of arsenic removal.
Abedin, M.J., Feldmann, J. and A.A. Meharg (2002). Uptake kinetics of arsenic species in rice plants. Plant Physiology, 128: 1120-1128.
Acharyya, A.K. (2002). Arsenic contamination in groundwater affecting major parts of southern West Bengal and parts of western Chhattisgarh: Source and mobilization process. Current Sci., 82: 740-744.
Acharyya, S.K., Chakraborty, P., Lahiri, S., Raymahashay, B.C., Guha, S. and A. Bhowmik (1999). Arsenic poisoning of the Ganges delta. Nature, 401: 545.
Akter, M. and M.H. Ali (2011). Arsenic contamination in groundwater and its proposed remedial measures. Int. J. Environ. Sci. Technol., 8: 433-443.
Arora, M., Megharaj, M. and R. Naidu (2009). Arsenic testing field kits: Some considerations and recommendations. Environ. Geochem. Health, 31: 45-48.
Baciocchi, R., Chiavola, A. and R. Gavasci (2005). Ion exchange equilibria of arsenic in the presence of high sulphate and nitrate concentrations. Water Sci. Technol: Water Supply, 5: 67-74.
Balasubramanian, N., Kojima, T., Basha, C.A. and C. Srinivasakannan (2009). Removal of arsenic from aqueous solution using electrocoagulation. J. Hazard.Mater., 167: 966-969.
Baruah, M.K., Kotoky, P., Baruah, J., Borah, G.C. and P.K. Bora (2003). Arsenic association and distribution in carbonaceous materials in northeastern India. Chemosphere, 85: 204-208.
Benner, S. (2010). Anthropogenic arsenic. Nat. Geosci., 3: 5-6.
Bhattacharya, P., Samal, A.C., Majumdar, J. and S.C. Santra (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut., 213: 3-13.
Biterna, M., Antonoglou, L., Lazou, E. and D. Voutsa (2010). Arsenite removal from waters by zero valent iron: Batch and column tests. Chemosphere, 78: 7-12.
Blacksmith Institute (2010). World’s Worst Pollution Problems Report. Online at www.worstpolluted.org.
Boddu, V.M., Abburi, K., Talbott, J.L., Smith, E.D. and R. Haasch (2008). Removal of arsenic(III) and arsenic(V) from aqueous medium using chitosan-coated biosorbent. Water Res., 42: 633-642.
Borho, M. and P. Wilderer (1996). Optimized removal of arsenate(III) by adaptation of oxidation and precipitation processes to the filtration step. Water Sci. Technol., 34: 25-31.
Brammer, H. and P. Ravenscroft (2009). Arsenic in groundwater: A threat to sustainable agriculture in South and South-east Asia. Environ. Int., 35: 647-654.
Bundschuh, J., Litter, M., Ciminelli, V.S.T., Morgada, M.E., Cornejo, L., Hoyos, S.G., Hokinkis, J., Alarcon-Herrera, M.T., Armienta, M.A. and P. Bhattacharya (2010). Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America—A critical analysis. Weed Res.,
44: 5828–5845.
Chakraborti, D., Rahman, M.M., Das, B., Murrill, M., Dey, S., Mukherjee, S.C., Dhar, R.K., Biswas, B.K., Chowdhury, U.K., Roy, S., Sorif, S., Selim, M., Rahman, M. and Q. Quamruzzaman (2010). Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Weed Res., 44: 5789-5802.
Chakraborti, D., Rahman, M.M., Paul, K., Chowdhury, U.K., Sengupta, M.K., Lodh, D., Chanda, C.R., Saha, K.C. and S.C. Mukherjee (2002). Arsenic calamity in Indian subcontinent. What lessons has been learned? Talanta,
58: 3-22.
Chakraborty, A.K. and K.C. Saha (1987). Arsenical dermatosis from tubewell water in West Bengal. Indian J. Medical Res., 85: 326-334.
Choudhury, S.S. (2011). Development and application of novel materials for the removal of arsenic, fluoride and microorganisms from groundwater. Ph.D. Diss., Bengal Engineering and Science University, Shibpur, India.
Chowdhury, S.R. and E.K. Yanful (2011). Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ. J., 25: 429-437.
Das, H.K., Mitra, A.K., Sengupta, P.K., Hossain, A., Islam, F. and G.H. Rabbani (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environ. Inter., 30: 383-387.
De, D., Mandal, S., Bhattacharya, J., Ram, S. and S. Roy (2009). Iron oxide nanoparticle assisted arsenic removal from aqueous system. J. Environ. Sci. Health A, 44: 155-162.
Dhar, R.K., Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A.W., Ahmed, S.A. and S.A. Hadi (1997). Groundwater arsenic calamity in Bangladesh. Current
Sci., 73: 48-59.
Diesel, E., Schreiber, M. and J.R. Van der Meer (2009). Development of bacteria-based bioassays for arsenic detection in natural waters. Anal.Bioanal. Chem., 394: 687-693.
Duarte, A.L.S., Cardoso, S.J.A. and A.J. Alcada (2009). Emerging and innovative techniques for arsenic removal applied to a small water supply system. Sustainability, 1: 1288-1304.
Dutta, P.K., Pehkonen, S.O., Sharma, V.K. and A.K. Roy (2005). Photocatalytic oxidation of arsenic(III): Evidence of hydroxyl radicals. Environ. Sci. Technol., 39: 1827-1834.
Han, B., Runnells, T., Zimbron, J. and R. Wickramasinghe (2002). Arsenic removal from drinking water by flocculation and microfiltration. Desalination, 145: 293-298.
Hansen, H.K., Nunez, P. and R. Grandon (2006). Electrocoagulation as a remediation tool for wastewaters containing arsenic. Miner. Eng., 19: 521-524.
Henderson, A.D. and A.H. Demond (2007). Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ. Eng. Sci., 24: 401-423.
Hua, B., Yan, W.G., Wang, J.M., Deng, B. and J. Yang (2011). Arsenic accumulation in rice grains: Effects of cultivars and water management practices. Environ. Eng. Sci., 28: 591-596.
Huang, W.Y., Liu, F., Chen, H.H., Bi, E.P. and T.T. Li (2010). Removal of trichloroethylene in groundwater using heterogeneous modified fenton chemical oxidation technology. Disaster Advances, 3: 293-296.
Islam, M.A., Sakakibara, H., Karim, M.R., Sekine, M. and Z. Mahmud (2011). Emerging and innovative techniques for arsenic removal applied to a small water supply system. Water Health, 9: 415-428.
Izabela, W., Izabela, P. and S. Zygmunt (2009). Transport of colloidal particles with arsenic ions adsorbed on the colloidal surfaces through mineral porous bed. Rocznik Ochrona Srodowiska, 11: 1119-1130.
Jain, C.K. and I. Ali (2000). Arsenic: occurrence, toxicity and speciation techniques. Weed Res., 34: 4304-4312.
Jain, C.K. and R.D. Singh (2012). Technological options for the removal of arsenic with special reference to South East Asia. J. Environ. Manage., 107: 1-18.
Jiang, J-Q., Ashekuzzaman, S.M., Jiang, A., Sharifuzzaman, S.M. and S.R. Chowdhury (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. Int. Res. Public Health, 10: 18-46.
Joshi, N., Wang, X., Montgomery, L., Elfick, A. and C.E. French (2010). Novel approaches to biosensors for detection of arsenic in drinking water. Desalination, 248: 517-523.
Jovanovic, B.M. and L.V. Rajakovic (2010). New approach: Waste materials as sorbents for arsenic removal from water. J. Environ. Eng.-ASCE, 136: 1277-1286.
Kazi, T.G., Arain, M.B., Baig, J.A., Jamali, M.K., Afridi, H.I., Jalbani, N., Sarfaraz, R.A., Shah, A.Q. and A. Naiz
(2009). The correlation of arsenic levels in drinking water with the biological samples of skin disorders. Sci. Total Environ., 407: 1019-1026.
Kim, J. and M.M. Benjamin (2004). Modeling a novel ion exchange process for arsenic and nitrate removal. Water Res., 38: 2053-2062.
Ko, L., Davis, A.P., Kim, J.Y. and K.W. Kim (2007). Arsenic removal by a colloidal iron oxide coated sand. J. Environ. Eng.-ASCE, 133: 891-898.
Kozul, C.D., Ely, K.H., Enelow, R.I. and J.W. Hamilton (2009). Low dose arsenic compromises the immune responses to influenza infection in vivo. Environ. Health Perspect, 117: 1441-1447.
Kumar, M.S., Anjali, P. and P. Tarasankar (2008). Arsenic removal household filter for small community. Res. J. Chem. Environ., 12, 23-32.
Lackovic, J.A., Nikolaidis, N.P. and G.M. Dobbs (2000). Inorganic arsenic removal by zero-valent iron. Environ. Eng. Sci., 17: 29-39.
Liao, C.M., Shen, H.H., Chen, C.L., Hsu, L.I., Lin, T.L., Chen, S.C. and C.J. Chen (2009). Risk assessment of arsenic-induced internal cancer at long-term low dose exposure. J. Hazard. Mater., 165: 652-663.
Lien, H.L. and R.T. Wilkin (2005). High-level arsenic removal from groundwater by zero valent iron. Chemosphere, 59: 377-386.
Lohokare, H.R., Muthu, M.R., Agarwal, G.P. and U.K. Kharul (2008). Effective arsenic removal using polyacrylonitrile- based ultrafiltration (UF) membrane. J. Membrane Sci.,320: 159-166.
Magalhaes, M.C.F. (2002). Arsenic: An environmental problem limited by solubility. Pure Appl. Chem., 74:
1843–1850.
Mahimairaja, S., Bolan, N.S., Andriano, D.C. and B. Robinson (2005). Arsenic contamination and its risk management in complex environmental settings. Adv. Agron., 86: 1-82.
Mandal, A. and D. Sengupta (2005). Radionuclide and trace element contamination around Kolaghat thermal power station, West Bengal–Environmental implications. Current Sci., 88: 617-624.
Manning, B.A., Hunt, M.L., Amrhein, C. and J.A. Yarmoff (2002). Arsenic(III) and arsenic(V) reactions with zero valent iron corrosion products. Environ. Sci. Technol.,36: 5455-5461.
Marchiset-Ferlay, N., Savanovitch, C. and M.P. Sauvant- Rochat (2012). What is the best biomarker to assess arsenic exposure via drinking water? Environ. Inter., 39: 150-171.
Mathieu, J.L., Gadgil, A.J., Kowolik, K. and S.E.A. Addy (2010). Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications. Lawrence Berkeley National Laboratory, LBNL Paper LBNL-2717E, Retrieved from: http://escholarship.org/uc/item/91f3h17p.
Meharg, A.A. and M.D. Mazibur (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol., 37: 229-234.
Mohan, D. and C.U. Pittman (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard.Mater., 142: 1-53.
Mondal, P., Majumder, C.B. and B. Mohanty (2006). Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater., 137: 464-479.
Mondal, P., Majumder, C.B. and B. Mohanty (2008). Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor. J. Hazard. Mater., 153: 136-145.
Mondal, D. and D.A. Polya (2008). Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Appl. Geochem., 23: 2987-2998.
Mudhoo, A., Sharma, S.K., Garg, V.K. and C.H. Tseng (2011). Arsenic: An overview of applications, health, and environmental concerns and removal processes. Crit. Rev. Environ. Sci. Technol., 41: 435-519.
Mukherjee, A., Hossain, M.K.S.M.A., Ahamed, S., Das, B., Nayak, B., Lodh, D., Rahman, M.M. and D. Chakraborti
(2006). Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario. J. Health Popul. Natur., 24: 142-163.
Mukherjee, A., Bhattacharya, P., Savage, K., Foster, A. and J. Bundschuh (2008). Distribution of geogenic arsenic in hydrologic systems: Controls and challenges. J. Contam. Hydrol., 99: 1-7.
Neumann, R.B., Ashfaque, K.N., Badruzzaman, A.B.M., Ali, M.A., Shoemaker, J.K. and C.F. Harvey (2009). Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci., 3: 46-52.
Nickson, R., McArthur, J., Ravenscroft, P., Burgess, W. and K.M. Ahmed (2000). Mechanism of arsenic release to groundwater. Appl. Geochem., 15: 403-413.
Rahman, A., Persson, L.A., Nermell, B., Arifeen, S.E., Ekstrom, E.C., Smith, A.H. and M. Vahter (2010). Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology, 21: 797-804.
Radloff, K.A., Zheng, Y., Michael, H.A., Stute, M., Bostick, B.C., Mihajlov, I., Bounds, M., Huq, M.R., Choudhury, I., Rahman, M.W., Schlosser, P., Ahmed, K.M. and A. van Geen (2011). Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci., doi:10.1038/NGEO1283.
Rahman, M.A. and H. Hasegawa (2011). High levels of inorganic arsenic in rice in areas where arsenic- contaminated water is used for irrigation and cooking. Sci. Total Environ., 409: 4645-4655.
Rott, U. and H. Kauffmann (2008). A contribution to solve the arsenic problem in groundwater of Ganges Delta by in-situ treatment. Water Sci. Technol., 10: 2009-2015.
Samadder, S.R. and C. Subbara (2007). Gis approach of delineation and risk assessment of areas affected by arsenic pollution in drinking water. J. Environ. Eng.-ASCE, 133: 742-749.
Sen, T.K. and K.C. Khilar (2006). Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid. Interface Sci., 119: 71-96.
Sharma, P., Abdou, H. and M. Flury (2008a). Effect of the lower boundary condition and flotation on colloid mobilization in unsaturated sandy sediments. Vadose Zone J., 7: 930-940.
Sharma, P., Flury, M. and E. Mattson (2008b). Studying colloid transport in porous media using a geocentrifuge. Water Resour. Res., 44: W07407, doi:10.1029/2007WR006456.
Sharma, P., Flury, M. and J. Zhou (2008c). Detachment of colloids from a solid surface by a moving air-water interface. J. Colloid Interface Sci., 326: 143-150.
Sharma, P., Rolle, M., Kocar, B., Fendorf, S. and A. Keppler (2011). Influence of natural organic matter on As transport and retention. Environ. Sci. Technol., 45: 546-553.
Silva, G.C., Vasconcelos, I.F., de Carvalho, R.P., Dantas, M.S.S. and V.S.T. Ciminelli (2009). Molecular modelling of iron and arsenic interactions with carboxy groups in natural biomass. Environ. Chem., 6: 350-356.
Smedley, P.L. and D.C. Kinniburgh (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem., 17: 517-568.
Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., Goeden, H.M., Hertz-Picciotto, I., Duggan, H.M., Wood, R., Kosnett, M.J. and M.T. Smith (1992). Cancer risks from arsenic in drinking water. Environ. Health Perspect., 97: 259-267.
SOS (2010). Report on arsenic exposure-carcinogen, http:// www.sosarsenic.net/english/contamin/index.html, pp. browsed in December 2010.
Sun, H., Wang, L., Zhang, R., Sui, Z. and G. Xu (2006). Treatment of groundwater polluted by arsenic compounds by zero valent iron. J. Hazard. Mater., 129: 297-303.
Tanboonchuy, V., Hsu, J.C., Grisdanurak, N. and C.H. Liao (2011). Gas-bubbled nanozero-valent iron process for high concentration arsenate removal. J. Hazard. Mater.,186: 2123-2128.
UNICEF (2008). Arsenic Mitigation in Bangladesh, online atwww.unicef.org/bangladesh/Arsenic.pdf.
UNICEF (2010). Towards an Arsenic Safe Environment in Bangladesh, online atwww.unicef.org.
Van Geen, A., Zheng, R., Versteeg, R., Stute, M., Horneman, A., Dhar, R., Stechler, M., Gelman, A., Small, C., Ahsan, H., Graziano, J.H., Hussain, I. and K.M. Ahmed (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour. Res., 39: 1140, doi:10.1029/2002WR001617.
Vu, K.B., Kaminski, M.D. and L. Nunez (2003). Review of arsenic removal technologies for contaminated groundwaters. Argonne National Laboratory, pp. Argonne, Illinois, ANL–CMT–03/2.
WHO (2001). Environmental Health Criteria 224. Arsenic and arsenic compounds. World Health Organization, Geneva.
Wilkie, J.A. and J.G. Hering (1996). Adsorption of arsenic onto hydrous ferric oxide: Effects of adsorbate/ adsorbent ratios and co-occurring solutes. Colloids Surf. Physicochem. Eng. Aspects, 107: 97-110.
Wilkin, R.T., Su, C., Ford, R.G. and C.J. Paul (2005). Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environ. Sci.Technol., 39: 4599-4605.
Williams, P.N., Islam, M.R., Adomako, E.E., Raab, A., Hossain, S.A., Zhu, Y.G., Feldmann, J. and A.A. Meharg
(2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ. Sci. Technol., 40: 4903-4908.
World Bank (2005). Arsenic Contamination of Groundwater in South and East Asian Countries Report, online at www. web.worldbank.org.
Wu, K., Liu, R., Liu, H.J., Zhao, X. and J.H. Qu (2011). Arsenic(III, V) adsorption on iron oxide-coated manganese sand and quartz sand: Comparison of different carriers and adsorption capacities. Environ. Eng. Sci., 28: 643-651.
Zaw, M. and M.T. Emett (2002). Arsenic removal from water using advanced oxidation processes. Toxicol. Lett., 133: 113-118.
Zhu, Y.G., Williams, P.N. and A.A. Meharg (2008). Exposure to inorganic arsenic from rice: A global health issue. Environ. Sci. Technol., 42: 5008-5013.