AccScience Publishing / AJWEP / Volume 11 / Issue 1 / DOI: 10.3233/AJW-2014-11_1_03
RESEARCH ARTICLE

The Impact of Vegetation and Peat Fire Emissions in  Indonesia on Air Pollution and Global Climate

Bärbel Langmann1*
Show Less
1 Universität Hamburg, Institut für Geophysik (IfG), Bundesstraße 55, 20146 Hamburg, Germany
AJWEP 2014, 11(1), 3–11; https://doi.org/10.3233/AJW-2014-11_1_03
Submitted: 13 September 2013 | Accepted: 11 November 2013 | Published: 1 January 2014
© 2014 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Fire is used in Indonesia as a tool to clear tropical forest and to convert peat land for agricultural purposes. This use of fire has considerably increased in recent decades. Increased fire activity is also strongly connected with the decrease of precipitation during El Niño years when the usually moist peat swamps in Indonesia suffer from extreme drought and are thus very susceptible to fires. The emissions from such peat fires greatly exceed those produced by surface vegetation fires and generate smoke haze episodes downwind in Southeast Asia. Furthermore, the concentrations of climatically relevant trace species in the atmosphere are considerably enhanced by emissions from Indonesian peat fires. The motivation of this paper is to provide an overview of vegetation and peat fires in Indonesia in recent years and to present the local, regional and global implications of the associated emissions.

Keywords
Peat fires
El Nino
deforestation
dry and rainy season
CO2 storage destruction
Conflict of interest
The authors declare they have no competing interests.
References

Abram, N.J., Gagan, M.K., McCulloch, M.T., Chappell, J. and W.S. Hantoro (2003). Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science, 301: 952-955.

Aldrian, E. and R.D. Susanto (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Clim., 23: 1435-1452.

Andreae, M.O. and P. Merlet (2001). Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycl., 15: 955-966.

Archard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T. and J.P. Malingreau (2002). Determination of deforestation rates of the World’s humid tropical forests. Science, 297: 999-1002.

Boehm, H.-D.V. and F. Siegert (2001). Ecological impact of the one million hectare rice project in central Kalimantan, Indonesia, using remote sensing and GIS. Proc. ACRS 2001 - 22nd Asian Conference on Remote Sensing, 5-9 November 2001, Singapore. Vol. 1.

Bowen, R.M., Bompard, J.M., Anderson, I.P., Guizol, P. and A. Gouyon (2000). Anthropogenic Fires in Indonesia: A View from Sumatra. In: Forest Fires and Regional Haze in South East Asia. Radoievic, M. and Eaton, R. (eds). Nova Science, New York, USA.

Boyd, P. (2008). Ranking geo-engineering schemes. Nature Geoscience, 1: 722-724.

Brauer, M. (1997). Assessment of health implications of haze in Malaysia. Mission Report RS/97/0441 Rev.1, November 1997. WHO Regional Office for the Western Pacific, Manila.

Cochrane, M.A., Anderson, H.R., Ostro, B. et al. (1999). Positive feedbacks in the fire dynamics of closed canopy tropical forests. Science, 284: 1832-1835.

Crutzen, P.J. and M.O. Andreae (1990). Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science, 250: 1669-1678.

Crutzen, P.J. and J. Lelieveld (2001). Human Impacts on Atmospheric Chemistry. Annual Review of Earth and Planetary Sciences, 29: doi:10.1146/annurev. earth.29.1.17.

Duncan, B.N., Bey, I., Chin, M., Mickley, L.J., Fairlie, T.D., Martin, R.V. and H. Matsueda (2003). Indonesian wildfires of 1997: Impact on tropospheric chemistry. J. Geophys. Res., 108: doi:10.1029/2002JD003195.

FAO/UNESCO (2003). Digital soil map of the world and derived soil properties.

Field, R.D., van der Werf, G.R. and S.S.P. Shen (2009). Human amplification of drought-induced biomass burning in Indonesia. Nature Geoscience, 2: doi:10.1038/ NGEO443.

Fuller, D.O. and K. Murphy (2006). The Enso-fire dynamic in insular Southeast Asia. Climatic Change, 74: 435-455.

FWI/GFW (2002). The State of the Forest: Indonesia. Forest Watch Indonesia, Bogor, Indonesia and Global Forest Watch, Washington DC.

Giglio, L., Randersson, J.T., van der Werf, G.R., Kasibhatla, P.S., Collatz, G.J., Morton, D.C. and R.S. DeFries (2010). Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences,
7: 1171-1186.

Goldammer, J.G. and C. Price (1998). Potential impacts of climate change in fire regimes in the tropics based on MAGICC and a GISS GCM-derived lightning model. Climate Change, 39: 273-296.

Hannibal, L.W. (1950). Vegetation Map of Indonesia. Planning Department, Forest Service, Jakarta. In: Forest Policies in Indonesia: The Sustainable Development of Forest Lands. Volume 3. International Institute for Environment and Development and Government of Indonesia. Jakarta, Indonesia.

Heil, A. and J.G. Goldammer (2001). Smoke-haze pollution: A review of the 1997 episode in Southeast Asia. Reg. Environ. Change, 2: 24-37.

Heil, A., Langmann, B. and E. Aldrian (2006). Indonesian peat and vegetation fire emissions: Study on factors influencing large-scale smoke haze pollution using a regional atmospheric chemistry model. Mitig. Adapt. Strat. Glob. Change, 12: 113-133.

IPCC (Intergovernmental Panel on Climate Change) (2001). Climate Change 2001: The Scientific Basis. Cambridge, University Press, Cambridge, UK.

Jaenicke, J., Wösten, J.H.M., Budiman, A. and F. Siegert(2010). Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strat. Glob. Change, 16: DOI: 10.1007/s11027- 010-9214-5.

Jickells, T.D., An, Z.S., Andersen, K.K. et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308: 67-71.

Kaufman, Y.J. and R.S. Fraser (1997). The effect of smoke particles on clouds and climate forcing. Science, 277: 1636-1639.

Kinnaird, M.F., Sanderson, E.W., O’Brian, T.G., Wibisonso, H.T. and G. Woolmer (2003). Deforestation trends in a tropical landscape and implications for endangered large mammals. Conservation Biology, 17: 245-257.

Langmann, B. and A. Heil (2004). Release and dispersion of vegetation and peat fire emissions in the atmosphere over Indonesia 1997/1998. Atmos. Chem. Phys., 4: 2145-2160.

Langmann, B., Duncan, B., Textor, C., Trentmann, J. and G.R. van der Werf (2009). Vegetation fire emissions and their impact on air pollution and climate. Atmos. Environ.,43: 107-116.

Langmann, B., Zaksek, K., Hort, M. and S. Duggen (2010). Volcanic ash as fertiliser for the surface ocean. Atmos. Chem. Phys., 10: 3891-3899.

Levine, J.S. (1999). The 1997 fires in Kalimantan and Sumatra, Indonesia: Gaseous and particulate emissions. Geophys. Res. Lettr., 26: 815-818.

Morrogh-Bernarda, H., Hussona, S., Page, S.E. and J.O. Rieley (2003). Population status of the Bornean orangutan
(Pongo pygmaeus) in the Sebangau peat swamp forest, Central Kalimantan, Indonesia. Biological Conservation, 110: 141-152.

Nakajima, T., Higurashi, A., Takeuchi, N. and J.R. Herman(1999). Satellite and ground-based study of optical properties of 1997 Indonesian forest fire aerosols. Geophys. Res. Lettr., 26: 2421-2424.

Nichol, J. (1997). Bioclimate impacts of the 1994 smoke haze events in Southeast Asia. Atmos. Environ., 31: 1209-1219.

Nober, F., Graf, H.-F. and D. Rosenfeld (2003). Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols. Global Planet. Change, 37: 57-80.

Nyhus, P. and R. Tilson (2004). Agroforestry, elephants, and tiger: Balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agriculture, Ecosystems and Environment, 104: 87-97.

Olson, J.R., Baum, B.A., Cahoon, D.R. and J.H. Crawford (1999). Frequency and distribution of forest, savanna, and  crop fires over tropical regions during PEM-Tropics A. J. Geophys. Res., 104: 5865-5876.

Ott, L., Duncan, B., Pawson, S., Colarco, P., Cin, M., Randles, C. Diehl, T. and E. Nielsen (2010). Influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM. J. Geophys. Res., 115: D14121, doi:10.1029/2009JD013181.

Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.-D.V., Jaya, A. and S. Limin (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature,420: 61-65.

Podgorny, I.A., Li, F. and V. Ramanathan (2003). Large aerosol radiative forcing due to the 1997 Indonesian Forest Fire. Geophys. Res. Lettr., 30: 281-284.

Reid, J.S., Koppmann, R., Eck, T.F. and D.P. Eleuterio (2005). A review of biomass burning emissions. Part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys., 5: 799-825.

Rieley, J.O., Page, S.E. and G. Sieffermann (1995). Tropical peat swamp forests of Southeast Asia: Ecology and environmental importance. Malaysian Journal of Tropical Geography, 26: 131-141.

Rieley, J.O. and S.E. Page (2005). Wise use of tropical peatland: Focus on southeast Asia. ALTERRA-Wageningen University and Research Centre and the EU INCO- STRAPEAT and RESTORPEAT Partnership. Report. ISBN 90327-0347-1, www.restorpeat.alterra.wur.nl/ download/WUG.pdf.

Rosenfeld, D. and I.M. Lensky (1998). Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds. Bulletin of the American Meteorological Society, 79: 2457-2476.

Schindler, L. (2000). Fire in Indonesia and the Integrated Forest Fire Management Project – IFFM. IFFN No. 23: 12-16.

Schultz, M.G., Heil, A., Hoelzemann, J.J., Spessa, A., Thonicke, K., Goldammer, J.G., Held, A.C. and J.M. Pereira (2008). Global Emissions from Vegetation Fires from 1960 to 2000. Glob. Biogeochem. Cycl., 22: GB2002, doi:10.1029/2007GB003031.

Siegert, F., Ruecker, G., Hinrichs, A. and A.A. Hoffmann (2001). Increased damage from fires in logged forests during droughts caused by El Niño. Nature, 414: 437-
440.

Stibig, H.-J., Beuchle, R. and F. Archard (2003). Mapping of the tropical forest cover of insular Southeast Asia from SPOT4-Vegetation images. Int. J. Remote Sens.,24: 3651-3662.

Soleiman, A., Othman, M., Shamah, A.A., Sulaiman, N.M. and M. Radojevic (2003). The occurrence of haze in Malaysia: A case study in an urban industrial area. Pure and Applied Geophysics, 160: 221-238.

Suyanto, S., Applegate, G., Permana, R.P., Khususiyah, N. and I. Kurniawan (2004). The role of fire in changing land use and livelihoods in Riau-Sumatra. Ecology and Society, 9: 15.

Usup, A., Takahashi, H. and S.H. Limin (2000). Aspect and mechanism of peat fire in tropical peat land: A case study in Central Kalimantan 1997. Proceedings of the International Symposium on Tropical Peatlands, Bogor, Indonesia, Hokkaido University and Indonesian Institute of Science.

Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz,G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Lin, Y. and T.T. van Leeuwen (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Phys., 10: 11707-11735.

WHO World Health Organisation (1998). Report on the biregional workshop on health impacts of haze-related air pollution, Kuala Lumpur, Malaysia, 1-4 June 1998. World Health Organisation, Kuala Lumpur, (WP)EHE(O)/ ICP/EHH/004-E.

Wösten, J.H.M., Clymans, E., Page, S.E., Rieley, J.O. and S.H. Limin (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena,73: 212-224.

Zoltai, S.C., Morrissey, L.A., Livingston, G.P. and W.J. de Groot (1998). Effects of fires on carbon cycling in North American boreal Peatlands. Environmental Reviews, 6: 13-24.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing