AccScience Publishing / OR / Online First / DOI: 10.36922/OR025500039
COMMENTARY

A modular protein approach to next-generation in situ cancer vaccines: A commentary

Mai Zhang1 Jing Tian2 Xuemei Fu1 Dingkang Liu1,2*
Show Less
1 Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
2 Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
Received: 9 December 2025 | Revised: 6 January 2026 | Accepted: 12 January 2026 | Published online: 5 February 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Cancer immunotherapy has revolutionized in situ vaccination approaches that leverage endogenous tumor antigens to initiate immune responses. This commentary examines the protease-activated PSTAGylated in situ tumor vaccine (PPTV), a modular metalloprotein platform engineered for precise co-delivery of mitochondria-disrupting peptides and manganese ions. Utilizing ferritin as a biodegradable chassis, PPTV achieves tumor-specific activation through matrix metalloproteinase 14 cleavage, inducing immunogenic cell death and activating the stimulator of interferon genes pathway. Preclinical models demonstrate potent antitumor immunity, with combination therapy eradicating established tumors. The integration of patient-derived organoids is proposed to personalize immunotherapy, highlighting the translational potential of biomaterial-based vaccines for overcoming present limitations in cancer treatment.

Keywords
Cancer immunotherapy
Metalloprotein
Immunogenic cell death
Stimulator of interferon genes pathway
Patient-derived organoids
Funding
This research was supported by the National Natural Science Foundation of China (No. 82304368).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Lynch C, Pitroda SP, Weichselbaum RR. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 2024;25(8):e352-e362. doi: 10.1016/S1470-2045(24)00075-5

 

  1. Gong N, Alameh MG, El-Mayta R, Xue L, Weissman D, Mitchell MJ. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov. 2024;23(8):607-625. doi: 10.1038/s41573-024-00974-9

 

  1. Demuynck R, Engelen Y, Skirtach AG, De Smedt SC, Lentacker I, Krysko DV. Nanomedicine to aid immunogenic cell death (ICD)-based anticancer therapy. Trends Cancer. 2024;10(6):486-489. doi: 10.1016/j.trecan.2024.03.003

 

  1. Liu D, Tian J, Yu L, et al. A modular metalloprotein in situ vaccine for cancer immunotherapy in mouse models of breast cancer. Sci Transl Med. 2025;17(825):eadr1777. doi: 10.1126/scitranslmed.adr1777

 

  1. Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21(1):79-91. doi: 10.1038/cdd.2013.75

 

  1. Li S, Luo M, Wang Z, et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomed Eng. 2021;5(5):455-466. doi: 10.1038/s41551-020-00675-9

 

  1. Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release. 2019;301:76-109. doi: 10.1016/j.jconrel.2019.03.015

 

  1. Liu D, Bao L, Zhu H, et al. Microenvironment-responsive anti-PD-L1 × CD3 bispecific T-cell engager for solid tumor immunotherapy. J Control Release. 2023;354:606-614. doi: 10.1016/j.jconrel.2023.01.041

 

  1. Liu D, Chen Y, Wang Q, et al. Tailored protein-conjugated DNA nanoplatform for synergistic cancer therapy. J Control Release. 2022;346:250-9. doi: 10.1016/j.jconrel.2022.04.022

 

  1. Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol. 2012;7(7):459-464. doi: 10.1038/nnano.2012.90

 

  1. Liang M, Fan K, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci U S A. 2014;111(41):14900-14905. doi: 10.1073/pnas.1407808111

 

  1. He J, Fan K, Yan X. Ferritin drug carrier (FDC) for tumor targeting therapy. J Control Release. 2019;311-312:288-300. doi: 10.1016/j.jconrel.2019.09.002

 

  1. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197-218. doi: 10.1038/s41573-018-0007-y

 

  1. Zhang Z, Zhou H, Ouyang X, et al. Multifaceted functions of STING in human health and disease: From molecular mechanism to targeted strategy. Signal Transduct Target Ther. 2022;7(1):394. doi: 10.1038/s41392-022-01252-z

 

  1. Reaney SH, Bench G, Smith DR. Brain accumulation and toxicity of Mn(II) and Mn(III) exposures. Toxicol Sci. 2006;93(1):114-124. doi: 10.1093/toxsci/kfl028

 

  1. Mengze L, Chen M, Zhang R, et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020;30(11):966-979. doi: 10.1038/s41422-020-00395-4

 

  1. Shafer AM, Kenna E, Golden LA, et al. Immunocompetent murine models recapitulate the heterogeneous tumor-immune microenvironment of human liposarcoma. Clin Cancer Res. 2025;31(23):5078-5095. doi: 10.1158/1078-0432.CCR-25-1628

 

  1. Adiga R, Al-adhami M, Andar A, et al. Point-of-care production of therapeutic proteins of good-manufacturing-practice quality. Nat Biomed Eng. 2018;2(9):675-686. doi: 10.1038/s41551-018-0259-1

 

  1. Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-926. doi: 10.1126/science.aao2774

 

  1. Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972-1988.e16. doi: 10.1016/j.cell.2018.11.021

 

  1. Li X, Nadauld L, Ootani A, et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 2014;20(7):769-777. doi: 10.1038/nm.3585

 

  1. Schmäche T, Fohgrub J, Klimova A, et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol Cancer. 2024;23(1):10. doi: 10.1186/s12943-023-01919-3

 

  1. Xu H, Jiao D, Liu A, Wu K. Tumor organoids: Applications in cancer modeling and potentials in precision medicine. J Hematol Oncol. 2022;15(1):58. doi: 10.1186/s13045-022-01278-4

 

  1. Kheiri S, Yakavets I, Cruickshank J, et al. Microfluidic platform for generating and releasing patient-derived cancer organoids with diverse shapes: Insight into shape-dependent tumor growth. Adv Mater Deerfield Beach Fla. 2024;36(44):e2410547. doi: 10.1002/adma.202410547

 

  1. Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180(1):188-204.e22. doi: 10.1016/j.cell.2019.11.036

 

  1. Wang F, Zhang G, Xu T, et al. High and selective cytotoxicity of ex vivo expanded allogeneic human natural killer cells from peripheral blood against bladder cancer: Implications for natural killer cell instillation after transurethral resection of bladder tumor. J Exp Clin Cancer Res. 2024;43(1):24. doi: 10.1186/s13046-024-02955-7
Share
Back to top
Organoid Research, Electronic ISSN: 3082-8503 Published by AccScience Publishing