AccScience Publishing / OR / Online First / DOI: 10.36922/OR025170016
REVIEW ARTICLE

Tendon organoids: Advances in bioengineering strategies and translational applications

Yiwen Xue1 Yixi Wu2 Hong Zhang3 Xiao Chen4,5,6* Huanhuan Liu7,8* Zi Yin1,4,9*
Show Less
1 Department of Orthopedic Surgery of Sir Run Run Shaw Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
2 Zhejiang University-University of Edinburgh Institute, Zhejiang University, Jiaxing, Zhejiang, China
3 Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
4 Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
5 Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
6 Zhejiang Key Laboratory of Motor System Disease Precision Research and Therapy, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
7 Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
8 Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States of America
9 Institute of Cell Biology, Zhejiang University, Hangzhou, Zhejiang, China
OR 2025, 1(3), 025170016 https://doi.org/10.36922/OR025170016
Received: 27 April 2025 | Revised: 21 June 2025 | Accepted: 26 August 2025 | Published online: 23 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

As critical connective tissues transmitting from muscles to bones, tendons play a central role in movement and postural stability. However, their low cellularity, limited metabolic activity, and propensity for degeneration render them vulnerable to acute and chronic injuries. Traditional therapeutic approaches, such as autografts and allografts, are constrained by donor scarcity, immune rejection, and suboptimal functional recovery, driving the emergence of tissue engineering and organoid technologies as innovative solutions. Tendon organoids, which recapitulate the native tendon’s three-dimensional (3D) structure, cellular complexity, and biomechanical niche, offer a physiologically relevant in vitro model for advancing our understanding of tendon development and pathology. This comprehensive review systematically examines recent advances in tendon organoid research, highlighting four key determinants in the construction of tendon organoids: (i) Selection and optimization of cell sources, particularly tendon stem/progenitor cells; (ii) regulation of biochemical cues through spatiotemporal coordination and signaling pathway modulation; (iii) design of biomimetic 3D microenvironments, including physical scaffolds and mechanical stimulation; and (iv) integration of engineering strategies, such as single-cell omics, gene editing, 3D bioprinting, and artificial intelligence (AI) for system optimization. Notably, tendon organoids demonstrate multidimensional potential in translational applications, including regenerative medicine, disease modeling, drug screening, and biomechanical research. To overcome current technical bottlenecks, future investigations should prioritize AI-driven organoid design, standardized manufacturing protocols, and solutions for clinical translation challenges. By bridging fundamental research and clinical therapeutics, this review outlines a theoretical framework and technical roadmap for the refined construction and application of tendon organoids, highlighting their transformative potential in regenerative medicine and precision healthcare.

Keywords
Tendon organoid
Tissue engineering
Regenerative medicine
Tendon stem/progenitor cells
Funding
This work was supported by the National Key Research and Development Program of China (2022YFA1106800), National Natural Science Foundation of China grants (82222044, T2121004, 32271406), Key R&D Program of Zhejiang (2024SSYS0026), and Fundamental Research Funds for the Zhejiang Provincial Universities (K20240141).
Conflict of interest
The authors declared that they have no competing interests.
References
  1. Gomez-Florit M, Labrador-Rached CJ, Domingues R, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev. 2022;185:114299. doi: 10.1016/j.addr.2022.114299

 

  1. Screen HR, Berk DE, Kadler KE, Ramirez F, Young MF. Tendon functional extracellular matrix. J Orthop Res. 2015;33(6):793-799. doi: 10.1002/jor.22818

 

  1. Nourissat G, Berenbaum F, Duprez D. Tendon injury: From biology to tendon repair. Nat Rev Rheumatol. 2015;11(4):223-233. doi: 10.1038/nrrheum.2015.26

 

  1. Abat F, Alfredson H, Cucchiarini M, et al. Current trends in tendinopathy: Consensus of the ESSKA basic science committee. Part I: Biology, biomechanics, anatomy and an exercise-based approach. J Exp Orthop. 2017;4(1):18. doi: 10.1186/s40634-017-0092-6

 

  1. Xu Y, Murrell GA. The basic science of tendinopathy. Clin Orthop Relat Res. 2008;466(7):1528-1538. doi: 10.1007/s11999-008-0286-4

 

  1. Teunis T, Lubberts B, Reilly BT, Ring D. A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J Shoulder Elbow Surg. 2014;23(12):1913-1921. doi: 10.1016/j.jse.2014.08.001

 

  1. Ning C, Li P, Gao C, et al. Recent advances in tendon tissue engineering strategy. Front Bioeng Biotechnol. 2023;11:1115312. doi: 10.3389/fbioe.2023.1115312

 

  1. Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: A perspective on construction and application. Bioact Mater. 2022;18:15-25. doi: 10.1016/j.bioactmat.2022.01.048

 

  1. Hast MW, Zuskov A, Soslowsky LJ. The role of animal models in tendon research. Bone Joint Res. 2014;3(6):193-202. doi: 10.1302/2046-3758.36.2000281

 

  1. Wu SY, Kim W, Kremen TJ Jr. In vitro cellular strain models of tendon biology and tenogenic differentiation. Front Bioeng Biotechnol. 2022;10:826748. doi: 10.3389/fbioe.2022.826748

 

  1. Ahammed B, Kalangi SK. A decade of organoid research: Progress and challenges in the field of organoid technology. ACS Omega. 2024;9(28):30087-30096. doi: 10.1021/acsomega.4c03683

 

  1. Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater. 2024;31:525-548. doi: 10.1016/j.bioactmat.2023.09.005

 

  1. Rosset J, Olaniyanu E, Stein K, Almeida ND, França R. Exploring the frontier of 3D bioprinting for tendon regeneration: A review. Eng. 2024;5(3):1838-1849. doi: 10.3390/eng5030098

 

  1. Yin Z, Chen X, Chen JL, Ouyang HW. Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther. 2010;10(5):689-700. doi: 10.1517/14712591003769824

 

  1. Martinez-Hernandez A, Amenta PS. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol. 1993;423(1):1-11. doi: 10.1007/BF01606425

 

  1. Kanel GC. Liver: Anatomy, Microscopic Structure, and Cell Types. Hoboken, New Jersey: Wiley; 2015. p. 145-160.

 

  1. Kwan K, Ng K, Rao Y, et al. Effect of aging on tendon biology, biomechanics and implications for treatment approaches. Int J Mol Sci. 2023;24(20):15183. doi: 10.3390/ijms242015183

 

  1. No YJ, Castilho M, Ramaswamy Y, Zreiqat H. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration. Adv Mater. 2020;32(18):e1904511. doi: 10.1002/adma.201904511

 

  1. Millar NL, Silbernagel KG, Thorborg K, et al. Tendinopathy. Nat Rev Dis Primers. 2021;7(1):1. doi: 10.1038/s41572-020-00234-1

 

  1. Ruiz-Alonso S, Lafuente-Merchan M, Ciriza J, Saenz-Del- Burgo L, Pedraz JL. Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. J Control Release. 2021;333:448-486. doi: 10.1016/j.jconrel.2021.03.040

 

  1. Zhang S, Ju W, Chen X, et al. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater. 2022;8:124-139. doi: 10.1016/j.bioactmat.2021.06.007

 

  1. Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: Repair and regeneration. Annu Rev Biomed Eng. 2012;14:47-71. doi: 10.1146/annurev-bioeng-071811-150122

 

  1. Jozsa L, Kannus P, Balint JB, Reffy A. Three-dimensional ultrastructure of human tendons. Acta Anat (Basel). 1991;142(4):306-312. doi: 10.1159/000147207

 

  1. De Aro AA, de Campos Vidal B, Pimentel ER. Biochemical and anisotropical properties of tendons. Micron. 2012;43(2-3):205-214. doi: 10.1016/j.micron.2011.07.015

 

  1. Thorpe CT, Screen HR. Tendon structure and composition. Adv Exp Med Biol. 2016;920:3-10. doi: 10.1007/978-3-319-33943-6_1

 

  1. Nichols A, Best KT, Loiselle AE. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl Res. 2019;209:156-168. doi: 10.1016/j.trsl.2019.02.002

 

  1. DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding tendon fibroblast biology and heterogeneity. Biomedicines. 2024;12(4):859. doi: 10.3390/biomedicines12040859

 

  1. Kannus P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000;10(6):312-320. doi: 10.1034/j.1600-0838.2000.010006312.x

 

  1. Darrieutort-Laffite C, Blanchard F, Soslowsky LJ, Le Goff B. Biology and physiology of tendon healing. Joint Bone Spine. 2024;91(5):105696. doi: 10.1016/j.jbspin.2024.105696

 

  1. De Micheli AJ, Swanson JB, Disser NP, et al. Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons. Am J Physiol Cell Physiol. 2020;319(5):C885-C894. doi: 10.1152/ajpcell.00372.2020

 

  1. Sarmiento P, Little D. Tendon and multiomics: Advantages, advances, and opportunities. NPJ Regen Med. 2021;6(1):61. doi: 10.1038/s41536-021-00168-6

 

  1. Kendal AR, Layton T, Al-Mossawi H, et al. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci Rep. 2020;10(1):13939. doi: 10.1038/s41598-020-70786-5

 

  1. Yin Z, Hu JJ, Yang L, et al. Single-cell analysis reveals a nestin+ tendon stem/progenitor cell population with strong tenogenic potentiality. Sci Adv. 2016;2(11):e1600874. doi: 10.1126/sciadv.1600874

 

  1. Feng S, Li J, Tian J, Lu S, Zhao Y. Application of single-cell and spatial omics in musculoskeletal disorder research. Int J Mol Sci. 2023;24(3):2271. doi: 10.3390/ijms24032271

 

  1. Gracey E, Burssens A, Cambré I, et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol. 2020;16(4):193-207. doi: 10.1038/s41584-019-0364-x

 

  1. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219-1227. doi: 10.1038/nm1630

 

  1. Chen Z, Jin M, He H, et al. Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat. 2023;39:63-73. doi: 10.1016/j.jot.2022.12.005

 

  1. Crosio G, Huang AH. Innate and adaptive immune system cells implicated in tendon healing and disease. Eur Cell Mater. 2022;43:39-52. doi: 10.22203/eCM.v043a05

 

  1. Garcia-Melchor E, Cafaro G, MacDonald L, et al. Novel self-amplificatory loop between T cells and tenocytes as a driver of chronicity in tendon disease. Ann Rheum Dis. 2021;80(8):1075-1085. doi: 10.1136/annrheumdis-2020-219335

 

  1. Arvind V, Crosio G, Howell K,Zhang H, Montero A, Huang AH. Functional tendon regeneration is driven by regulatory T cells and IL-33 signaling. Sci Adv. 2025;11(17):eadn5409. doi: 10.1126/sciadv.adn5409

 

  1. Chen S, Lin Y, Yang H, et al. A CD26+ tendon stem progenitor cell population contributes to tendon repair and heterotopic ossification. Nat Commun. 2025;16(1):749. doi: 10.1038/s41467-025-56112-5

 

  1. Tachibana N, Chijimatsu R, Okada H, et al. RSPO2 defines a distinct undifferentiated progenitor in the tendon/ ligament and suppresses ectopic ossification. Sci Adv. 2022;8(33):eabn2138. doi: 10.1126/sciadv.abn2138

 

  1. Tachibana N, Chijimatsu R, Okada H, et al. Rspo2/Prg4- positive cells contribute to ligament/tendon homeostasis through suppression of ectopic endochondral ossification. J Bone Miner Res. 2022;8(33):1-15.

 

  1. Feng H, Xing WH, Han YJ, et al. Tendon-derived cathepsin K-expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification. J Clin Invest. 2020;130(12):6354-6365. doi: 10.1172/JCI132518

 

  1. Parks AN, Nahata J, Edouard NE, Temenoff JS, Platt MO. Sequential, but not concurrent, incubation of cathepsin K and L with type I collagen results in extended proteolysis. Sci Rep. 2019;9:5399. doi: 10.1038/s41598-019-41782-1

 

  1. Harvey T, Flamenco S, Fan CM. A Tppp3+Pdgfra+ tendon stem cell population contributes to regeneration and reveals a shared role for PDGF signalling in regeneration and fibrosis. Nat Cell Biol. 2019;21(12):1490-1503. doi: 10.1038/s41556-019-0417-z

 

  1. Chatterjee M, Muljadi PM, Andarawis-Puri N. The role of the tendon ECM in mechanotransduction: Disruption and repair following overuse. Connect Tissue Res. 2022;63(1):28-42. doi: 10.1080/03008207.2021.1925663

 

  1. Zhou G, Li R, Sheng S, et al. Organoids and organoid extracellular vesicles-based disease treatment strategies. J Nanobiotechnology. 2024;22(1):679. doi: 10.1186/s12951-024-02917-3

 

  1. Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022;7(1):168. doi: 10.1038/s41392-022-01024-9

 

  1. Han X, Cai C, Deng W, et al. Landscape of human organoids: Ideal model in clinics and research. Innovation (Camb). 2024;5(3):100620. doi: 10.1016/j.xinn.2024.100620

 

  1. Li M, Izpisua BJ. Organoids - preclinical models of human disease. N Engl J Med. 2019;380(6):569-579. doi: 10.1056/NEJMra1806175

 

  1. Wilson HV. A new method by which sponges may be artificially reared. Science. 1907;25(649):912-915. doi: 10.1126/science.25.649.912

 

  1. Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935

 

  1. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373-379. doi: 10.1038/nature12517

 

  1. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481-484. doi: 10.1038/nature12271

 

  1. Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14(1):53-67. doi: 10.1016/j.stem.2013.11.010

 

  1. Huch M, Bonfanti P, Boj SF, et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 2013;32(20):2708-2721. doi: 10.1038/emboj.2013.204

 

  1. Zhang Y, Li D, Liu Y, et al. 3D-bioprinted anisotropic bicellular living hydrogels boost osteochondral regeneration via reconstruction of cartilage-bone interface. Innovation (Camb). 2024;5(1):100542. doi: 10.1016/j.xinn.2023.100542

 

  1. Kratochvil MJ, Seymour AJ, Li TL,Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nat Rev Mater. 2019;4(9):606-622. doi: 10.1038/s41578-019-0129-9

 

  1. Zhu YJ, Sun LY, Wu XY, Gu ZF, Zhao YJ. Engineered human organoids for biomedical applications. Adv Funct Mater. 2024;34(11):2310961. doi: 10.1002/adfm.202310961

 

  1. Wang Y, Qin J. Advances in human organoids-on-chips in biomedical research. Life Med. 2023;2(1):lnad007. doi: 10.1093/lifemedi/lnad007

 

  1. Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016

 

  1. Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe. 2021;29(6):867-878. doi: 10.1016/j.chom.2021.04.002

 

  1. Shi H, Kowalczewski A, Vu D, et al. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Med Novel Technol Devices. 2024;21:100276. doi: 10.1016/j.medntd.2023.100276

 

  1. Chen W, Sun Y, Gu X, et al. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials. 2021;271:120714. doi: 10.1016/j.biomaterials.2021.120714

 

  1. Zhang H, Chen Y, Fan C, et al. Cell-subpopulation alteration and FGF7 activation regulate the function of tendon stem/ progenitor cells in 3D microenvironment revealed by single-cell analysis. Biomaterials. 2022;280:121238. doi: 10.1016/j.biomaterials.2021.121238

 

  1. Barboni B, Curini V, Russo V, et al. Indirect co-culture with tendons or tenocytes can program amniotic epithelial cells towards stepwise tenogenic differentiation. PLoS One. 2012;7(2):e30974. doi: 10.1371/journal.pone.0030974

 

  1. Zhang C, Zhang E, Yang L, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials. 2018;172:66-82. doi: 10.1016/j.biomaterials.2018.03.043

 

  1. Qin TW, Sun YL, Thoreson AR, et al. Effect of mechanical stimulation on bone marrow stromal cell-seeded tendon slice constructs: A potential engineered tendon patch for rotator cuff repair. Biomaterials. 2015;51:43-50. doi: 10.1016/j.biomaterials.2015.01.070

 

  1. Zhao LL, Luo JJ, Cui J, et al. Tannic acid-modified decellularized tendon scaffold with antioxidant and anti-inflammatory activities for tendon regeneration. ACS Appl Mater Interfaces. 2024;16(13):15879-15892. doi: 10.1021/acsami.3c19019

 

  1. Alberti KA, Xu Q. Biocompatibility and degradation of tendon-derived scaffolds. Regen Biomater. 2016;3(1):1-11. doi: 10.1093/rb/rbv023

 

  1. Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact Mater. 2020;5(3):636-643. doi: 10.1016/j.bioactmat.2020.04.017

 

  1. Rajpar I, Barrett JG. Optimizing growth factor induction of tenogenesis in three-dimensional culture of mesenchymal stem cells. J Tissue Eng. 2019;10:1-9. doi: 10.1177/2041731419848776

 

  1. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5

 

  1. Wang D, Zhang X, Huang S, et al. Engineering multi-tissue units for regenerative medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021;272:120789. doi: 10.1016/j.biomaterials.2021.120789

 

  1. Yin Y, Zhou W, Zhu J, et al. Generation of self-organized neuromusculoskeletal tri-tissue organoids from human pluripotent stem cells. Cell Stem Cell. 2025;32(1):157-171.e8. doi: 10.1016/j.stem.2024.11.005

 

  1. Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/ cartilage organoids: Strategy, progress, and application. Bone Res. 2024;12(1):66. doi: 10.1038/s41413-024-00376-y

 

  1. Ahn SY. Various strategies of tendon stem/progenitor cell reprogramming for tendon regeneration. Int J Mol Sci. 2024;25(21):11745. doi: 10.3390/ijms252111745

 

  1. Kohler J, Popov C, Klotz B, et al. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging Cell. 2013;12(6):988-999. doi: 10.1111/acel.12124

 

  1. Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged tendon stem/progenitor cells are less competent to form 3D tendon organoids due to cell autonomous and matrix production deficits. Front Bioeng Biotechnol. 2020;8:406. doi: 10.3389/fbioe.2020.00406

 

  1. Yang C, Teng Y, Geng B, et al. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol. 2023;11:1118468. doi: 10.3389/fbioe.2023.1118468

 

  1. Kang K, Geng Q, Cui L, et al. Upregulation of runt related transcription factor 1 (RUNX1) contributes to tendon-bone healing after anterior cruciate ligament reconstruction using bone mesenchymal stem cells. J Orthop Surg Res. 2022;17(1):266. doi: 10.1186/s13018-022-03152-y

 

  1. Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology. 2023;21(1):14. doi: 10.1186/s12951-023-01778-6

 

  1. Jiang L, Lu J, Chen Y, et al. Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). Int J Mol Med. 2023;52(2):70. doi: 10.3892/ijmm.2023.5273

 

  1. Jang KM, Lim HC, Jung WY, Moon SW, Wang JH. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: New strategy to enhance tendon graft healing. Arthroscopy. 2015;31(8):1530-1539. doi: 10.1016/j.arthro.2015.02.023

 

  1. Matsumoto T, Sato Y, Kobayashi T, et al. Adipose-derived stem cell sheets improve early biomechanical graft strength in rabbits after anterior cruciate ligament reconstruction. Am J Sports Med. 2021;49(13):3508-3518. doi: 10.1177/03635465211041582

 

  1. Monteiro RF, Bakht SM, Gomez-Florit M, et al. Writing 3D in vitro models of human tendon within a biomimetic fibrillar support platform. ACS Appl Mater Interfaces. 2023;15:50598-50611. doi: 10.1021/acsami.2c22371

 

  1. Stanco D, Boffito M, Bogni A, et al. 3D Bioprinting of human adipose-derived stem cells and their tenogenic differentiation in clinical-grade medium. Int J Mol Sci. 2020;21(22):8694. doi: 10.3390/ijms21228694

 

  1. Zhang C, Yuan H, Liu H, et al. Well-aligned chitosan-based ultrafine fibers committed teno-lineage differentiation of human induced pluripotent stem cells for Achilles tendon regeneration. Biomaterials. 2015;53:716-730. doi: 10.1016/j.biomaterials.2015.02.051

 

  1. Elkhenany H, El-Derby A, Abd Elkodous M, Salah RA, Lotfy A, El-Badri N. Applications of the amniotic membrane in tissue engineering and regeneration: The hundred-year challenge. Stem Cell Res Ther. 2022;13(1):8. doi: 10.1186/s13287-021-02684-0

 

  1. Mauro A, Russo V, Di Marcantonio L, et al. M1 and M2 macrophage recruitment during tendon regeneration induced by amniotic epithelial cell allotransplantation in ovine. Res Vet Sci. 2016;105:92-102. doi: 10.1016/j.rvsc.2016.01.014

 

  1. Russo V, Mohammad M, Prencipe G, et al. Tendon 3D scaffolds establish a tailored microenvironment instructing paracrine mediated regenerative amniotic epithelial stem cells potential. Biomedicines. 2022;10(10):2578. doi: 10.3390/biomedicines10102578

 

  1. Shi J, Yao H, Chong H, et al. Tissue-engineered collagen matrix loaded with rat adipose-derived stem cells/human amniotic mesenchymal stem cells for rotator cuff tendon-bone repair. Int J Biol Macromol. 2024;282(Pt 4):137144. doi: 10.1016/j.ijbiomac.2024.137144

 

  1. Russo V, Mauro A, Peserico A, et al. Tendon healing response is dependent on epithelial-mesenchymal-tendon transition state of amniotic epithelial stem cells. Biomedicines. 2022;10(5):1177. doi: 10.3390/biomedicines10051177

 

  1. Russo V, Prencipe G, Mauro A, et al. Assessing the functional potential of conditioned media derived from amniotic epithelial stem cells engineered on 3D biomimetic scaffolds: An in vitro model for tendon regeneration. Mater Today Bio. 2024;25:101001. doi: 10.1016/j.mtbio.2024.101001

 

  1. Citeroni MR, Mauro A, Ciardulli MC, et al. Amnion-derived teno-inductive secretomes: A novel approach to foster tendon differentiation and regeneration in an ovine model. Front Bioeng Biotechnol. 2021;9:649288. doi: 10.3389/fbioe.2021.649288

 

  1. Ragni E, Papait A, Perucca OC, et al. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med. 2021;10(7):1044-1062. doi: 10.1002/sctm.20-0390

 

  1. Chen J, Zhang E, Zhang W, et al. Fos promotes early stage teno-lineage differentiation of tendon stem/progenitor cells in tendon. Stem Cells Transl Med. 2017;6(11):2009-2019. doi: 10.1002/sctm.15-0146

 

  1. Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ, Mendias CL. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB J. 2019;33(11):12680-12695. doi: 10.1096/fj.201901503R

 

  1. Wall ME, Dyment NA, Bodle J, et al. Cell signaling in tenocytes: Response to load and ligands in health and disease. Adv Exp Med Biol. 2016;920:79-95. doi: 10.1007/978-3-319-33943-6_7

 

  1. Wang D, Pun C, Huang S, et al. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J. 2020;34(6):8172-8186. doi: 10.1096/fj.201902377RR

 

  1. Yin Z, Guo J, Wu TY, et al. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med. 2016;5(8):1106-1116. doi: 10.5966/sctm.2015-0215

 

  1. Yao Z, Li J, Xiong H, et al. MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnology. 2021;19(1):169. doi: 10.1186/s12951-021-00906-4

 

  1. Perucca OC, Viganò M, Pearson JR, et al. In vitro induction of tendon-specific markers in tendon cells, adipose- and bone marrow-derived stem cells is dependent on TGFβ3, BMP-12 and ascorbic acid stimulation. Int J Mol Sci. 2019;20(1):149. doi: 10.3390/ijms20010149

 

  1. Lin M, Li W, Ni X, et al. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol. 2023;11:1250533. doi: 10.3389/fbioe.2023.1250533

 

  1. Tokunaga T, Shukunami C, Okamoto N, et al. FGF-2 stimulates the growth of tenogenic progenitor cells to facilitate the generation of tenomodulin-positive tenocytes in a rat rotator cuff healing model. Am J Sports Med. 2015;43(10):2411-2422. doi: 10.1177/0363546515597488

 

  1. Perikamana SKM, Lee J, Ahmad T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials. 2018;165:79-93. doi: 10.1016/j.biomaterials.2018.02.046

 

  1. Freedman BR, Kuttler A, Beckmann N, et al. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat Biomed Eng. 2022;6(10):1167-1179. doi: 10.1038/s41551-021-00810-0

 

  1. Donderwinkel I, Tuan RS, Cameron NR, Frith JE. A systematic investigation of the effects of TGF-β3 and mechanical stimulation on tenogenic differentiation of mesenchymal stromal cells in a poly(ethylene glycol)/ gelatin-based hydrogel. J Orthop Translat. 2023;43:1-13. doi: 10.1016/j.jot.2023.09.006

 

  1. De Roberto DBN, Wang C, Maity S, et al. Engineered organoids for biomedical applications. Adv Drug Deliv Rev. 2023;203:115142. doi: 10.1016/j.addr.2023.115142

 

  1. Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y

 

  1. Fan C, Zhao Y, Chen Y, et al. A Cd9+Cd271+ stem/progenitor population and the SHP2 pathway contribute to neonatal-to-adult switching that regulates tendon maturation. Cell Rep. 2022;39(4):110762. doi: 10.1016/j.celrep.2022.110762

 

  1. Chen Y, Zhang Y, Chen X, et al. Biomimetic intrafibrillar mineralization of native tendon for soft-hard interface integration by infiltration of amorphous calcium phosphate precursors. Adv Sci (Weinh). 2023;10(34):e2304216. doi: 10.1002/advs.202304216

 

  1. Li S, Sun Y, Chen Y, et al. Sandwich biomimetic scaffold based tendon stem/progenitor cell alignment in a 3D microenvironment for functional tendon regeneration. ACS Appl Mater Interfaces. 2023;15(3):4652-4667. doi: 10.1021/acsami.2c16584

 

  1. Dong Z, Peng R, Zhang Y, et al. Tendon repair and regeneration using bioinspired fibrillation engineering that mimicked the structure and mechanics of natural tissue. ACS Nano. 2023;17(18):17858-17872. doi: 10.1021/acsnano.3c03428

 

  1. Xie X, Xu J, Lin J, et al. Micro-nano hierarchical scaffold providing temporal-matched biological constraints for tendon reconstruction. Biofabrication. 2023;16(1):015018. doi: 10.1088/1758-5090/ad1608

 

  1. Zhang H, Liu MF, Liu RC, Shen WL, Yin Z, Chen X. Physical microenvironment-based inducible scaffold for stem cell differentiation and tendon regeneration. Tissue Eng Part B Rev. 2018;24(6):443-453. doi: 10.1089/ten.TEB.2018.0018

 

  1. Ye YJ, Xu YF, Hou YB, Yin DC, Su DB, Zhao ZX. The regulation of tendon stem cell distribution, morphology, and gene expression by the modulus of microfibers. Colloids Surf B Biointerfaces. 2023;228:113393. doi: 10.1016/j.colsurfb.2023.113393

 

  1. Guo XM, Zhao YS, Chang HX, et al. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation. 2006;113(18):2229-2237. doi: 10.1161/CIRCULATIONAHA.105.583039

 

  1. Drakhlis L, Devadas SB, Zweigerdt R. Generation of heart-forming organoids from human pluripotent stem cells. Nat Protoc. 2021;16(12):5652-5672. doi: 10.1038/s41596-021-00629-8

 

  1. Li X, Sheng S, Li G, et al. Research progress in hydrogels for cartilage organoids. Adv Healthc Mater. 2024;13(22):e2400431. doi: 10.1002/adhm.202400431

 

  1. Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020;5(7):539-551. doi: 10.1038/s41578-020-0199-8

 

  1. Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol. 2021;4(1):1387. doi: 10.1038/s42003-021-02910-8

 

  1. Sorushanova A, Delgado LM, Wu Z, et al. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv Mater. 2019;31(1):e1801651. doi: 10.1002/adma.201801651

 

  1. Darshan TG, Chen CH, Kuo CY, et al. Development of high resilience spiral wound suture-embedded gelatin/PCL/ heparin nanofiber membrane scaffolds for tendon tissue engineering. Int J Biol Macromol. 2022;221:314-333. doi: 10.1016/j.ijbiomac.2022.09.001

 

  1. Chan DD, Guilak F, Sah RL, Calve S. Mechanobiology of hyaluronan: Connecting biomechanics and bioactivity in musculoskeletal tissues. Annu Rev Biomed Eng. 2024;26(1):25-47. doi: 10.1146/annurev-bioeng-073123-120541

 

  1. Sun M, Li H, Hou Y, et al. Multifunctional tendon-mimetic hydrogels. Sci Adv. 2023;9(7):eade6973. doi: 10.1126/sciadv.ade6973

 

  1. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593

 

  1. Dong L, Li L, Song Y, et al. MSC-derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body reaction and tendon adhesion. Acta Biomater. 2021;133:280-296. doi: 10.1016/j.actbio.2021.04.035

 

  1. Yang Q, Li J, Su W, et al. Electrospun aligned poly(ε- caprolactone) nanofiber yarns guiding 3D organization of tendon stem/progenitor cells in tenogenic differentiation and tendon repair. Front Bioeng Biotechnol. 2022;10:960694. doi: 10.3389/fbioe.2022.960694

 

  1. Wu S, Wang Y, Streubel PN, Duan B. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater. 2017;62:102-115. doi: 10.1016/j.actbio.2017.08.043

 

  1. Rinoldi C, Kijeńska-Gawrońska E, Khademhosseini A, Tamayol A, Swieszkowski W. Fibrous systems as potential solutions for tendon and ligament repair, healing, and regeneration. Adv Healthc Mater. 2021;10(7):e2001305. doi: 10.1002/adhm.202001305

 

  1. Hojabri M, Tayebi T, Kasravi M, et al. Wet-spinnability and crosslinked fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. Int J Biol Macromol. 2023;240:124492. doi: 10.1016/j.ijbiomac.2023.124492

 

  1. Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated microfluidics-assisted hydrogel-based wet-spinning for the biofabrication of biomimetic engineered myotendinous junction. Adv Healthc Mater. 2024;13(32):e2402075. doi: 10.1002/adhm.202402075

 

  1. Wu Y. Electrohydrodynamic jet 3D printing in biomedical applications. Acta Biomater. 2021;128:21-41. doi: 10.1016/j.actbio.2021.04.036

 

  1. Li M, Wu Y, Yuan T, et al. Biofabrication of composite tendon constructs with the fibrous arrangement, high cell density, and enhanced cell alignment. ACS Appl Mater Interfaces. 2023;15(41):47989-48000. doi: 10.1021/acsami.3c10697

 

  1. Xu PJ, Gu YX, Xue Y, et al. Advanced biomimetic materials in the prevention of tendon adhesions: Design, preparation, and application of hydrogel and electrospun fiber membranes. Small. 2025;21:e2411913. doi: 10.1002/smll.202411913

 

  1. Chen Z, Zhou B, Wang X, et al. Synergistic effects of mechanical stimulation and crimped topography to stimulate natural collagen development for tendon engineering. Acta Biomater. 2022;145:297-315. doi: 10.1016/j.actbio.2022.04.026

 

  1. Sheng R, Jiang Y, Backman LJ, Zhang W, Chen J. The application of mechanical stimulations in tendon tissue engineering. Stem Cells Int. 2020;2020:8824783. doi: 10.1155/2020/8824783

 

  1. Yang R, Qi Y, Zhang X, Gao H, Yu Y. Living biobank: Standardization of organoid construction and challenges. Chin Med J (Engl). 2024;137(24):3050-3060. doi: 10.1097/CM9.0000000000003414

 

  1. Jin H, Xue Z, Liu J, Ma B, Yang J, Lei L. Advancing organoid engineering for tissue regeneration and biofunctional reconstruction. Biomater Res. 2024;28:0016. doi: 10.34133/bmr.0016

 

  1. James Clinton PM. Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture. Curr Protoc Cell Biol. 2019;82:e66. doi: 10.1002/cpcb.66

 

  1. Benage LG, Sweeney JD, Giers MB, Balasubramanian R. Dynamic load model systems of tendon inflammation and mechanobiology. Front Bioeng Biotechnol. 2022;10:896336. doi: 10.3389/fbioe.2022.896336

 

  1. Abdel FA, Ranga A. Nanoparticles as versatile tools for mechanotransduction in tissues and organoids. Front Bioeng Biotechnol. 2020;8:240. doi: 10.3389/fbioe.2020.00240

 

  1. Sun Y, Sheng R, Cao Z, et al. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. Sci Adv. 2024;10(17):eadm7164. doi: 10.1126/sciadv.adm7164

 

  1. Sheng R, Liu J, Zhang W, et al. Material stiffness in cooperation with macrophage paracrine signals determines the tenogenic differentiation of mesenchymal stem cells. Adv Sci (Weinh). 2023;10(17):e2206814. doi: 10.1002/advs.202206814

 

  1. Ajalik RE, Alenchery RG, Cognetti JS, et al. Human organ-on-a-chip microphysiological systems to model musculoskeletal pathologies and accelerate therapeutic discovery. Front Bioeng Biotechnol. 2022;10:846230. doi: 10.3389/fbioe.2022.846230

 

  1. Ajalik RE, Linares I, Alenchery RG, et al. Human tendon-on-a-chip for modeling the myofibroblast microenvironment in peritendinous fibrosis. Adv Healthc Mater. 2025;14(4):e2403116. doi: 10.1002/adhm.202403116

 

  1. Bakht SM, Pardo A, Gomez-Florit M, et al. Human tendon-on-chip: Unveiling the effect of core compartment-T cell spatiotemporal crosstalk at the onset of tendon inflammation. Adv Sci (Weinh). 2024;11(41):e2401170. doi: 10.1002/advs.202401170

 

  1. Su W, Yang Q, Li T, et al. Electrospun aligned nanofiber yarns constructed biomimetic M-type interface integrated into precise co-culture system as muscle-tendon junction-on-a-chip for drug development. Small Methods. 2024;8(9):e2301754. doi: 10.1002/smtd.202301754

 

  1. Zhang Y, Lei T, Tang C, et al. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials. 2021;271:120722. doi: 10.1016/j.biomaterials.2021.120722

 

  1. Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small. 2019;15(24):e1805530. doi: 10.1002/smll.201805530

 

  1. Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Biofabrication. 2020;12(4):045011. doi: 10.1088/1758-5090/aba411

 

  1. Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36(30):e2309875. doi: 10.1002/adma.202309875

 

  1. Vidler C, Halwes M, Kolesnik K, et al. Dynamic interface printing. Nature. 2024;634(8036):1096-1102. doi: 10.1038/s41586-024-08077-6

 

  1. Gonzalez-Ferrer J, Lehrer J, O’Farrell A, et al. SIMS: A deep-learning label transfer tool for single-cell RNA sequencing analysis. Cell Genom. 2024;4(6):100581. doi: 10.1016/j.xgen.2024.100581

 

  1. Yan R, Fan C, Yin Z, Wang T, Chen X. Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine. Stem Cells. 2021;39(5):511-521. doi: 10.1002/stem.3336

 

  1. Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater. 2024;42:140-164. doi: 10.1016/j.bioactmat.2024.08.027

 

  1. Du X, Chen Z, Li Q, et al. Organoids revealed: Morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf. 2023;6(3):319-339. doi: 10.1007/s42242-022-00226-y

 

  1. Mukashyaka P, Kumar P, Mellert DJ, et al. High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with cellos. Nat Commun. 2023;14(1):8406. doi: 10.1038/s41467-023-44162-6

 

  1. Lefferts JW, Kroes S, Smith MB, et al. OrgaSegment: Deep-learning based organoid segmentation to quantify CFTR dependent fluid secretion. Commun Biol. 2024;7(1):319. doi: 10.1038/s42003-024-05966-4

 

  1. Zhu YX, Huang JQ, Ming YY, Zhuang Z, Xia H. Screening of key biomarkers of tendinopathy based on bioinformatics and machine learning algorithms. PLoS One. 2021;16(10):e0259475. doi: 10.1371/journal.pone.0259475

 

  1. Dursun G, Tandale SB, Gulakala R, et al. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology. Comput Methods Programs Biomed. 2021;208:106279. doi: 10.1016/j.cmpb.2021.106279

 

  1. Deng S, Li C, Cao J, et al. Organ-on-a-chip meets artificial intelligence in drug evaluation. Theranostics. 2023;13(13):4526-4558. doi: 10.7150/thno.87266

 

  1. Lee H. Engineering in vitro models: Bioprinting of organoids with artificial intelligence. Cyborg Bionic Syst. 2023;4:0018. doi: 10.34133/cbsystems.0018

 

  1. Kiratitanaporn W, Guan J, Tang M, et al. 3D printing of a biomimetic myotendinous junction assisted by artificial intelligence. Biomater Sci. 2024;12(23):6047-6062. doi: 10.1039/d4bm00892h

 

  1. Chaudhury S, Musa A, Abdulmawjod AA, Gwilym S. Rotator cuff tears. Orthop Trauma. 2022;36(3):144-151. doi: 10.1016/j.mporth.2022.03.003

 

  1. Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med. 2019;16(6):549-571. doi: 10.1007/s13770-019-00196-w

 

  1. Wang B, Liu W, Li JJ, et al. A low dose cell therapy system for treating osteoarthritis: In vivo study and in vitro mechanistic investigations. Bioact Mater. 2022;7:478-490. doi: 10.1016/j.bioactmat.2021.05.029

 

  1. Xu Z, Xu W, Zhang T, Luo L. Mechanisms of tendon-bone interface healing: Biomechanics, cell mechanics, and tissue engineering approaches. J Orthop Surg Res. 2024;19(1):817. doi: 10.1186/s13018-024-05304-8

 

  1. Li ZJ, Yang QQ, Zhou YL. Basic research on tendon repair: Strategies, evaluation, and development. Front Med (Lausanne). 2021;8:664909. doi: 10.3389/fmed.2021.664909

 

  1. Costa-Almeida R, Calejo I, Gomes ME. Mesenchymal stem cells empowering tendon regenerative therapies. Int J Mol Sci. 2019;20(12):3002. doi: 10.3390/ijms20123002

 

  1. Septiana WL, Pawitan JA. Potential use of organoids in regenerative medicine. Tissue Eng Regen Med. 2024;21(8):1125-1139. doi: 10.1007/s13770-024-00672-y

 

  1. Wang JHC, Thampatty BP. The pathogenic mechanisms of tendinopathy. In: Tendinopathy. Berlin, Germany: Springer Nature; 2021. p. 13-22

 

  1. Di Cristofano C, Della Rocca C, Gumina S. Histopathology of rotator cuff tears. Sports Med Arthrosc Rev. 2017;19:65-68. doi: 10.1097/JSA.0b013e318213bccb

 

  1. Tang C, Wang Z, Xie Y, et al. Classification of distinct tendinopathy subtypes for precision therapeutics. Nat Commun. 2024;15(1):9460. doi: 10.1038/s41467-024-53826-w

 

  1. Morita W, Dakin SG, Snelling SJB, Carr AJ. Cytokines in tendon disease: A systematic review. Bone Joint Res. 2017;6(12):656-664. doi: 10.1302/2046-3758.612.BJR-2017-0112.R1

 

  1. Bombieri C, Corsi A, Trabetti E, et al. Advanced cellular models for rare disease study: Exploring neural, muscle and skeletal organoids. Int J Mol Sci. 2024;25(2):1014. doi: 10.3390/ijms25021014

 

  1. Lamb J, Crawford ED, Peck D, et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929-1935. doi: 10.1126/science.1132939

 

  1. Subramanian A, Narayan R, Corsello SM, et al. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017;171(6):1437-1452.e17. doi: 10.1016/j.cell.2017.10.049

 

  1. Hart DA, Ahmed AS, Chen J, Ackermann PW. Optimizing tendon repair and regeneration: How does the in vivo environment shape outcomes following rupture of a tendon such as the Achilles tendon? Front Bioeng Biotechnol. 2024;12:1357871. doi: 10.3389/fbioe.2024.1357871

 

  1. Stańczak M, Kacprzak B, Gawda P. Tendon cell biology: Effect of mechanical loading. Cell Physiol Biochem. 2024;58(6):677-701. doi: 10.33594/000000743

 

  1. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082

 

  1. Dye BR, Dedhia PH, Miller AJ, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. Elife. 2016;5:e19732. doi: 10.7554/eLife.19732

 

  1. Gjorevski N, Nikolaev M, Brown TE, et al. Tissue geometry drives deterministic organoid patterning. Science. 2022;375(6576):eaaw9021. doi: 10.1126/science.aaw9021

 

  1. Sugimoto S, Ohta Y, Fujii M, et al. Reconstruction of the human colon epithelium in vivo. Cell Stem Cell. 2018;22(2):171-176.e5. doi: 10.1016/j.stem.2017.11.012

 

  1. Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246-254. doi: 10.1038/ncb3312

 

  1. Boj SF, Hwang C, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160(1):324-338. doi: 10.1016/j.cell.2014.12.021

 

  1. Bock C, Boutros M, Camp JG, et al. The organoid cell atlas. Nat Biotechnol. 2021;39(1):13-17. doi: 10.1038/s41587-020-00762-x

 

  1. Licata JP, Schwab KH, Har-el Y, Gerstenhaber JA, Lelkes PI. Bioreactor technologies for enhanced organoid culture. Int J Mol Sci. 2023;24(14):11427. doi: 10.3390/ijms241411427

 

  1. Li Z, Chen L, Wu J, et al. A review of 3D bioprinting for organoids. Med Rev (2021). 2025;5:318-338. doi: 10.1515/mr-2024-0089

 

  1. Ge J, Wang Y, Li Q, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ. 2024;12:e18422. doi: 10.7717/peerj.18422

 

  1. Ye B. Approaches to vascularizing human brain organoids. PLoS Biol. 2023;21(5):e3002141. doi: 10.1371/journal.pbio.3002141

 

  1. Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing animal testing with stem cell-organoids: Advantages and limitations. Stem Cell Rev Rep. 2024;20(6):1375-1386. doi: 10.1007/s12015-024-10723-5
Share
Back to top
Organoid Research, Electronic ISSN: 3082-8503 Published by AccScience Publishing