Strategies for constructing rotator cuff organoids: A review
Rotator cuff injury is a common disease of the locomotor system, causing a serious burden on the individual patient as well as society. The current treatment primarily involves surgical intervention, but it cannot completely restore the physiological integrity of the rotator cuff and carries a significant risk of postoperative re-tear. To improve the repair of rotator cuff injuries, regenerative medicine strategies have been widely explored. Organoids refer to three-dimensional (3D) tissue structures derived from stem/progenitor cells in vitro, which recapitulate native organ structure and function, providing an emerging platform for disease modeling, drug screening, and regenerative medicine. In this paper, we first outline the disease background of rotator cuff anatomy and current clinical treatments and subsequently summarize fabrication strategies for the rotator cuff-relevant organoids, focusing on skeletal muscle, tendon, bone, cartilage, and especially regenerative medicine approaches for the tendon-bone interface. Building upon this foundation, we describe in detail the integrative strategies for rotator cuff organoid biofabrication, encompassing cell sources, matrix materials, construction techniques, and strategies. Finally, this work also addresses the challenges in rotator cuff organoid construction and outlines possible solutions, while re-emphasizing the transformative potential of rotator cuff organoids for promoting fundamental research, accelerating drug screening, and enabling functional repair of rotator cuff diseases.
- Hooper N, Marathe A, Jain NB, Jayaram P. Cell-based therapies for rotator cuff injuries: An updated review of the literature. Int J Mol Sci. 2024;25(6):3139. doi: 10.3390/ijms25063139
- Zhang X, Wang D, Wang Z, et al. Clinical perspectives for repairing rotator cuff injuries with multi-tissue regenerative approaches. J Orthop Translat. 2022;36:91-108. doi: 10.1016/j.jot.2022.06.004
- Yamamoto A, Takagishi K, Osawa T, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19(1):116-120. doi: 10.1016/j.jse.2009.04.006
- Johnson M, Crossley KL, O’Neil, M, Al-Zakwani I. Estimates of Direct Healthcare Expenditures among Individuals with Shoulder Dysfunction in the United States. Warrenville, IL, USA: American Society of Shoulder and Elbow Therapists; 2004.
- John M, Pap G, Angst F, et al. Short-term results after reversed shoulder arthroplasty (Delta III) in patients with rheumatoid arthritis and irreparable rotator cuff tear. Int Orthop. 2010;34(1):71-77. doi: 10.1007/s00264-009-0733-1
- Fitzpatrick LA, Atinga A, White L, Henry PDG, Probyn L. Rotator cuff injury and repair. Semin Musculoskelet Radiol. 2022;26(5):585-596. doi: 10.1055/s-0042-1756167
- Huegel J, Williams AA, Soslowsky LJ. Rotator cuff biology and biomechanics: A review of normal and pathological conditions. Curr Rheumatol Rep. 2015;17(1):476. doi: 10.1007/s11926-014-0476-x
- Xue X, Song Q, Yang X, Kuati A, Fu H, Cui G. Effect of extracorporeal shock wave therapy for rotator cuff injury: Protocol for a systematic review and meta-analysis. PLoS One. 2024;19(5):e0301820. doi: 10.1371/journal.pone.0301820
- Weber S, Chahal J. Management of rotator cuff injuries. J Am Acad Orthop Surg. 2020;28(5):e193-e201. doi: 10.5435/JAAOS-D-19-00463
- Du C, Chen W, Fang J, et al. Comparison of 3 different surgical techniques for rotator cuff repair in a rabbit model: Direct suture, inlay suture, and polyether ether ketone (PEEK) suture anchor. Am J Sports Med. 2024;52(6):1428-1438. doi: 10.1177/03635465241240140
- Liu Z, Wang Y, Liu P. A parachute suturing technique for rotator cuff tear. Arthrosc Tech. 2024;13(11):103122. doi: 10.1016/j.eats.2024.103122
- Bahadir B, Sarikaya B. Platelet-rich plasma in the management of rotator cuff tendinopathy. Jt Dis Relat Surg. 2024;35(2):462-467. doi: 10.52312/jdrs.2024.1586
- Han L, Fang WL, Jin B, Xu SC, Zheng X, Hu YG. Enhancement of tendon-bone healing after rotator cuff injuries using combined therapy with mesenchymal stem cells and platelet rich plasma. Eur Rev Med Pharmacol Sci. 2019;23(20):9075-9084. doi: 10.26355/eurrev_201910_19310
- Wang Z, Liao Y, Wang C, et al. Stem cell-based therapeutic strategies for rotator cuff tendinopathy. J Orthop Translat. 2023;42:73-81. doi: 10.1016/j.jot.2023.07.006
- Foti C, Vellucci C, Santoro A. Regenerative medicine solutions for rotator cuff injuries in athletes: Indications and outcomes. Sports Med Arthrosc Rev. 2024;32(1):46-50. doi: 10.1097/JSA.0000000000000399
- Lyu X, Wang J, Su J. Intelligent manufacturing for osteoarthritis organoids. Cell Prolif. 2025;58:e70043. doi: 10.1111/cpr.70043
- Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: Self-assembled versus engineered tissue models. Biomater Sci. 2024;12(14):3522-3549. doi: 10.1039/d4bm00317a
- Zhao Z, Chen X, Dowbaj AM, et al. Organoids. Nat Rev Methods Primers. 2022;2:94. doi: 10.1038/s43586-022-00174-y
- Verstegen MMA, Coppes RP, Beghin A, et al. Clinical applications of human organoids. Nat Med. 2025;31(2):409-421. doi: 10.1038/s41591-024-03489-3
- Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 2019;24(3):487-497.e7. doi: 10.1016/j.stem.2018.12.015
- Shinozawa T, Kimura M, Cai Y, et al. High-fidelity drug-induced liver injury screen using human pluripotent stem cell-derived organoids. Gastroenterology. 2021;160(3):831-846.e10. doi: 10.1053/j.gastro.2020.10.002
- Nugraha B, Buono MF, Von Boehmer L, Hoerstrup SP, Emmert MY. Human cardiac organoids for disease modeling. Clin Pharmacol Ther. 2019;105(1):79-85. doi: 10.1002/cpt.1286
- Little MH, Combes AN. Kidney organoids: Accurate models or fortunate accidents. Genes Dev. 2019;33(19-20):1319-1345. doi: 10.1101/gad.329573.119
- Almeqdadi M, Mana MD, Roper J, Yilmaz ÖH. Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. Am J Physiol Cell Physiol. 2019;317(3):C405-C419. doi: 10.1152/ajpcell.00300.2017
- Zhang C, Jing Y, Wang J, et al. Skeletal organoids. Biomater Transl. 2024;5(4):390-410. doi: 10.12336/biomatertransl.2024.04.005
- Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol. 2020;319(1):C151-C165. doi: 10.1152/ajpcell.00120.2020
- Rossi G, Manfrin A, Lutolf MP. Progress and potential in organoid research. Nat Rev Genet. 2018;19(11):671-687. doi: 10.1038/s41576-018-0051-9
- Chen W, Liu D, Lu K, et al. Organoids of musculoskeletal system for disease modeling, drug screening, and regeneration. Adv Healthc Mater. 2025;14(9):e2402444. doi: 10.1002/adhm.202402444
- Frontera WR, Ochala J. Skeletal muscle: A brief review of structure and function. Calcif Tissue Int. 2015;96(3):183-195. doi: 10.1007/s00223-014-9915-y
- Edouard P, Reurink G, Mackey AL, et al. Traumatic muscle injury. Nat Rev Dis Primers. 2023;9(56):1-19. doi: 10.1038/s41572-023-00469-8
- Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription. 2019;10(1):1-20. doi: 10.1080/21541264.2018.1558677
- Gao C, Shi Q, Pan X, et al. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell Rep. 2024;43(3):11381192. doi: 10.1016/j.celrep.2024.113892
- Shin MK, Bang JS, Lee JE, et al. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration. Int J Mol Sci. 2022;23(9):5108. doi: 10.3390/ijms23095108
- Ebrahimi M, Lad H, Fusto A, et al. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021;132:227-244. doi: 10.1016/j.actbio.2021.05.020
- Ostrovidov S, Ramalingam M, Bae H, et al. Latest developments in engineered skeletal muscle tissues for drug discovery and development. Expert Opin Drug Discov. 2023;18(1):47-63. doi: 10.1080/17460441.2023.2160438
- Grass T, Dokuzluoglu Z, Rodríguez-Muela N. Neuromuscular organoids to study spinal cord development and disease. Methods Mol Biol. 2024;2951:197-219. doi: 10.1007/7651_2024_574
- Li J, Yang Y, Yi Z, et al. Microdroplet-engineered skeletal muscle organoids from primary tissue recapitulate parental physiology with high reproducibility. Research (Wash D C). 2025;8:0699. doi: 10.34133/research.0699
- Yin Y, Zhou W, Zhu J, et al. Generation of self-organized neuromusculoskeletal tri-tissue organoids from human pluripotent stem cells. Cell Stem Cell. 2025;32(1):157-171.e8. doi: 10.1016/j.stem.2024.11.005
- Shahriyari M, Islam MR, Sakib SM, et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle. 2022;13(6):3106-3121. doi: 10.1002/jcsm.13094
- Jiang Y, Zhou R, Liao F, et al. Unraveling radiation-induced skeletal muscle damage: Insights from a 3D human skeletal muscle organoid model. Biochim Biophys Acta Mol Cell Res. 2024;1871(7):119792. doi: 10.1016/j.bbamcr.2024.119792
- Svobodova B, Jelinkova S, Pesl M, et al. Cellular pathology of the human heart in Duchenne muscular dystrophy (DMD): Lessons learned from in vitro modeling. Pflugers Arch. 2021;473(7):1099-1115. doi: 10.1007/s00424-021-02589-0
- Stańczak M, Kacprzak B, Gawda P. Tendon cell biology: Effect of mechanical loading. Cell Physiol Biochem. 2024;58(6):677-701. doi: 10.33594/000000743
- Loiacono C, Palermi S, Massa B, et al. Tendinopathy: Pathophysiology, therapeutic options, and role of nutraceutics. A narrative literature review. Medicina (Kaunas). 2019;55(8):447. doi: 10.3390/medicina55080447
- De Micheli AJ, Swanson JB, Disser NP, et al. Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons. Am J Physiol Cell Physiol. 2020;319(5):C885-C894. doi: 10.1152/ajpcell.00372.2020
- Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219-1227. doi: 10.1038/nm1630
- Riley G. Tendinopathy--from basic science to treatment. Nat Clin Pract Rheumatol. 2008;4(2):82-89. doi: 10.1038/ncprheum0700
- Tam KT, Baar K. Using load to improve tendon/ligament tissue engineering and develop novel treatments for tendinopathy. Matrix Biol. 2025;135:39-54. doi: 10.1016/j.matbio.2024.12.001
- Kroner-Weigl N, Chu J, Rudert M, Alt V, Shukunami C, Docheva D. Dexamethasone is not sufficient to facilitate tenogenic differentiation of dermal fibroblasts in a 3D organoid model. Biomedicines. 2023;11(3):772. doi: 10.3390/biomedicines11030772
- Yan Z, Yin H, Brochhausen C, Pfeifer CG, Alt V, Docheva D. Aged tendon stem/progenitor cells are less competent to form 3D tendon organoids due to cell autonomous and matrix production deficits. Front Bioeng Biotechnol. 2020;8:406. doi: 10.3389/fbioe.2020.00406
- Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater. 2022;145:25-42. doi: 10.1016/j.actbio.2022.04.028
- Graça AL, Kroner-Weigl N, Reyes Alcaraz V, Müller- Deubert S, Rudert M, Docheva D. Demonstration of Self-assembled cell sheet culture and manual generation of a 3d tendon/ligament-like organoid by using human dermal fibroblasts. J Vis Exp. 2024;(208).
doi: 10.3791/66047
- Zhao F, Cheng J, Sun M, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Biofabrication. 2020;12(4):045011. doi: 10.1088/1758-5090/aba411
- Qiu Y, Lei J, Koob TJ, Temenoff JS. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med. 2016;10(12):989-999. doi: 10.1002/term.1880
- Iaquinta MR, Montesi M, Mazzoni E. Advances in bone biology. Int J Mol Sci. 2024;25(13):6892. doi: 10.3390/ijms25136892
- Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone organoids: Recent advances and future challenges. Adv Healthc Mater. 2024;13(5):e2302088. doi: 10.1002/adhm.202302088
- Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol. 2025;21(3):135-153. doi: 10.1038/s41574-024-01039-y
- Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S131-S139. doi: 10.2215/CJN.04151206
- Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741
- Rodríguez Ruiz A, Van Hoolwerff M, Sprangers S, et al. Mutation in the CCAL1 locus accounts for bidirectional process of human subchondral bone turnover and cartilage mineralization. Rheumatology (Oxford). 2022;62(1):360-372. doi: 10.1093/rheumatology/keac232
- O’Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Eng Part A. 2021;27(15-16):1099-1109. doi: 10.1089/ten.tea.2020.0273
- Cardier JE, Diaz-Solano D, Wittig O, et al. Osteogenic organoid for bone regeneration: Healing of bone defect in congenital pseudoarthrosis of the tibia. Int J Artif Organs. 2024;47(2):107-114. doi: 10.1177/03913988231220844
- Fuller J, Lefferts KS, Shah P, Cottrell JA. Methodology and characterization of a 3d bone organoid model derived from murine cells. Int J Mol Sci. 2024;25(8):4225. doi: 10.3390/ijms25084225
- Li C, Zhang Y, Du Y, et al. A review of advanced biomaterials and cells for the production of bone organoid. Small Sci. 2023;3(8):2300027. doi: 10.1002/smsc.202300027
- Park Y, Cheong E, Kwak JG, Carpenter R, Shim JH, Lee J. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv. 2021;7(4):eabd6495. doi: 10.1126/sciadv.abd6495
- Frenz-Wiessner S, Fairley SD, Buser M, et al. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods. 2024;21(5):868-881. doi: 10.1038/s41592-024-02172-2
- Iordachescu A, Hughes EAB, Joseph S, Hill EJ, Grover LM, Metcalfe AD. Trabecular bone organoids: A micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity. 2021;7(1):17. doi: 10.1038/s41526-021-00146-8
- Kong Y, Yang Y, Hou Y, Wang Y, Li W, Song Y. Advance in the application of organoids in bone diseases. Front Cell Dev Biol. 2024;12:1459891. doi: 10.3389/fcell.2024.1459891
- Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol. 2018;71-72:51-69. doi: 10.1016/j.matbio.2018.05.005
- Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/ cartilage organoids: Strategy, progress, and application. Bone Res. 2024;12(1):66. doi: 10.1038/s41413-024-00376-y
- Lan X, Boluk Y, Adesida AB. 3D bioprinting of hyaline cartilage using nasal chondrocytes. Ann Biomed Eng. 2024;52(7):1816-1834. doi: 10.1007/s10439-023-03176-3
- Shen C, Wang J, Li G, et al. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024;35:429-444. doi: 10.1016/j.bioactmat.2024.02.016
- Wu Y, Jia Z, Sun K, Zhou G, Tao K. A multi-gradient organoid of articular cartilage with bionic matrix microenvironment. Biomaterials. 2025;322:123393. doi: 10.1016/j.biomaterials.2025.123393
- Zhang Y, Fang Q, Peng Y, et al. Establishment and characterization of an inflammatory cartilaginous organoids model for organoid transplantation study. J Orthop Translat. 2025;52:376-386. doi: 10.1016/j.jot.2025.05.002
- Golshan M, Dortaj H, Omidi Z, et al. Cartilage repair: Unleashing PRP’s potential in organoid models. Cytotechnology. 2025;77(3):86. doi: 10.1007/s10616-025-00739-1
- Abe K, Yamashita A, Morioka M, et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun. 2023;14(1):804. doi: 10.1038/s41467-023-36408-0
- Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol. 2023;11:1125405. doi: 10.3389/fcell.2023.1125405
- Rothbauer M, Byrne RA, Schobesberger S, et al. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab Chip. 2021;21(21):4128-4143. doi: 10.1039/d1lc00130b
- Chen Z, Bo Q, Wang C, Xu Y, Fei X, Chen R. Single BMSC-derived cartilage organoids for gradient heterogeneous osteochondral regeneration by leveraging native vascular microenvironment. J Nanobiotechnol. 2025;23(1):325. doi: 10.1186/s12951-025-03403-0
- Saveh-Shemshaki N, S Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater. 2019;94:64-81. doi: 10.1016/j.actbio.2019.05.041
- Narayanan G, Nair LS, Laurencin CT. Regenerative engineering of the rotator cuff of the shoulder. ACS Biomater Sci Eng. 2018;4(3):751-786. doi: 10.1021/acsbiomaterials.7b00631
- Wang D, Zhang X, Huang S, et al. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021;272:120789. doi: 10.1016/j.biomaterials.2021.120789
- Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A. 2018;93(1):19-31. doi: 10.1002/cyto.a.23242
- Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5(4):136-148. doi: 10.4252/wjsc.v5.i4.136
- Bernardo ME, Locatelli F, Fibbe WE. Mesenchymal stromal cells. Ann N Y Acad Sci. 2009;1176:101-117. doi: 10.1111/j.1749-6632.2009.04607.x
- Shi L, Chen L, Gao X, et al. Comparison of different sources of mesenchymal stem cells: Focus on inflammatory bowel disease. Inflammopharmacology. 2024;32(3):1721-1742. doi: 10.1007/s10787-024-01468-1
- Arthur A, Gronthos S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci. 2020;21(24):9759. doi: 10.3390/ijms21249759
- Zhao Y, He J, Qiu T, Zhang H, Liao L, Su X. Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther. 2022;13(1):201. doi: 10.1186/s13287-022-02852-w
- Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials. 2020;235:119708. doi: 10.1016/j.biomaterials.2019.119708
- Liu Q, Hatta T, Qi J, et al. Novel engineered tendon-fibrocartilage-bone composite with cyclic tension for rotator cuff repair. J Tissue Eng Regen Med. 2018;12(7):1690-1701. doi: 10.1002/term.2696
- Du C, Wu R, Yan W, et al. Ultrasound-controlled delivery of growth factor-loaded cerasomes combined with polycaprolactone scaffolds seeded with bone marrow mesenchymal stem cells for biomimetic tendon-to-bone interface engineering. ACS Appl Mater Interfaces. 2024;16(1):292-304. doi: 10.1021/acsami.3c14959
- Liu K, Fu XW, Wang ZM. Msx1-modified rat bone marrow mesenchymal stem cell therapy for rotator cuff repair: A comprehensive analysis of tendon-bone healing and cellular mechanisms. J Orthop Res. 2025;43(4):859-869. doi: 10.1002/jor.26039
- Melief SM, Zwaginga JJ, Fibbe WE, Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455-463. doi: 10.5966/sctm.2012-0184
- Shi J, Yao H, Chong H, et al. Tissue-engineered collagen matrix loaded with rat adipose-derived stem cells/human amniotic mesenchymal stem cells for rotator cuff tendon-bone repair. Int J Biol Macromol. 2024;282(Pt 4):137144. doi: 10.1016/j.ijbiomac.2024.137144
- Song W, Zhang D, Wu D, et al. Cryopreserved adipose-derived stem cell sheets: an off-the-shelf scaffold for augmenting tendon-to-bone healing in a rabbit model of chronic rotator cuff tear. Am J Sports Med. 2023;51(8):2005-2017. doi: 10.1177/03635465231171682
- Shin MJ, Shim IK, Kim DM, et al. Engineered cell sheets for the effective delivery of adipose-derived stem cells for tendon-to-bone healing. Am J Sports Med. 2020;48(13):3347-3358. doi: 10.1177/0363546520964445
- Fu G, Lu L, Pan Z, Fan A, Yin F. Adipose-derived stem cell exosomes facilitate rotator cuff repair by mediating tendon-derived stem cells. Regen Med. 2021;16(4):359-372. doi: 10.2217/rme-2021-0004
- Wei B, Lu J. Characterization of Tendon-Derived Stem Cells and Rescue Tendon Injury. Stem Cell Rev Rep. 2021;17(5):1534-1551. doi: 10.1007/s12015-021-10143-9
- He Y, Lu S, Chen W, et al. Exosomes derived from tendon stem/progenitor cells enhance tendon-bone interface healing after rotator cuff repair in a rat model. Bioact Mater. 2024;40:484-502. doi: 10.1016/j.bioactmat.2024.06.014
- Zhang X, Wu Y, Han K, et al. 3-dimensional bioprinting of a tendon stem cell-derived exosomes loaded scaffold to bridge the unrepairable massive rotator cuff tear. Am J Sports Med. 2024;52(9):2358-2371. doi: 10.1177/03635465241255918
- Kozlowski MT, Crook CJ, Ku HT. Towards organoid culture without Matrigel. Commun Biol. 2021;4(1):1387. doi: 10.1038/s42003-021-02910-8
- Ni Y, Tian B, Lv J, et al. 3D-printed PCL scaffolds loaded with bFGF and BMSCs enhance tendon-bone healing in rat rotator cuff tears by immunomodulation and osteogenesis promotion. ACS Biomater Sci Eng. 2025;11(2):1123-1139. doi: 10.1021/acsbiomaterials.4c02340
- Dai X, Dang M, Meng X, et al. Porous Se@SiO2 nanoparticle composite hydrogels loaded with adipose stem cells improves the local microenvironment to promote rotator cuff tendon-bone healing in rats. J Mater Chem B. 2025;13(19):5598-5612. doi: 10.1039/d4tb02642j
- Yuan M, Dai X, Yang Y, et al. An injectable bmp-2-releasing porous hydrogel regulating the paracrine effects of ADSCs promotes tendon-to-bone healing in rotator cuff repair. Adv Sci (Weinh). 2025;12:e15923. doi: 10.1002/advs.202415923
- Cao Y, Yang S, Zhao D, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Translat. 2020;23:89-100. doi: 10.1016/j.jot.2020.01.004
- Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018;3:159-173. doi: 10.1038/s41578-018-0023-x
- Chin L, Calabro A, Walker E, Derwin KA. Mechanical properties of tyramine substituted-hyaluronan enriched fascia extracellular matrix. J Biomed Mater Res A. 2012;100(3):786-793. doi: 10.1002/jbm.a.34025
- Chen W, Sun Y, Gu X, et al. Conditioned medium of human bone marrow-derived stem cells promotes tendon-bone healing of the rotator cuff in a rat model. Biomaterials. 2021;271:120714. doi: 10.1016/j.biomaterials.2021.120714
- Lp MRL, Agrawal DK. Biomechanical forces in the tissue engineering and regeneration of shoulder, hip, knee, and ankle joints. J Biotechnol Biomed. 2023;6(4):491-500. doi: 10.26502/jbb.2642-91280111
- Jiang X, Wu S, Kuss M, et al. 3D printing of multilayered scaffolds for rotator cuff tendon regeneration. Bioact Mater. 2020;5(3):636-643. doi: 10.1016/j.bioactmat.2020.04.017
- Chae S, Yong U, Park W, et al. 3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioact Mater. 2022;19:611-625. doi: 10.1016/j.bioactmat.2022.05.004
- Chen P, Cui L, Chen G, et al. The application of BMP-12- overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair. Int J Biol Macromol. 2019;138:79-88. doi: 10.1016/j.ijbiomac.2019.07.041
- Zhao Q, Cui H, Wang Y, Du X. Microfluidic platforms toward rational material fabrication for biomedical applications. Small. 2020;16(9):e1903798. doi: 10.1002/smll.201903798
- Jiang S, Zhao H, Zhang W, et al. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep Med. 2020;1(9):100161. doi: 10.1016/j.xcrm.2020.100161
- Nguyen VVT, Ye S, Gkouzioti V, et al. A human kidney and liver organoid-based multi-organ-on-a-chip model to study the therapeutic effects and biodistribution of mesenchymal stromal cell-derived extracellular vesicles. J Extracell Vesicles. 2022;11(11):e12280. doi: 10.1002/jev2.12280
- Ding Z, Cai Y, Sun H, et al. Janus hydrogel microrobots with bioactive ions for the regeneration of tendon-bone interface. Nat Commun. 2025;16(1):2189. doi: 10.1038/s41467-025-57499-x
- Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication. 2024;16(3):10. doi: 10.1088/1758-5090/ad467d
- Butler DL, Goldstein SA, Guldberg RE, et al. The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2009;15(4):477-484. doi: 10.1089/ten.TEB.2009.0340
- Benhardt HA, Cosgriff-Hernandez EM. The role of mechanical loading in ligament tissue engineering. Tissue Eng Part B Rev. 2009;15(4):467-475. doi: 10.1089/ten.TEB.2008.0687
- Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep. 2017;7(1):8837. doi: 10.1038/s41598-017-08879-x
- Chen P, Güven S, Usta OB, Yarmush ML, Demirci U. Biotunable acoustic node assembly of organoids. Adv Healthc Mater. 2015;4(13):1937-1943. doi: 10.1002/adhm.201500279
- Perestrelo AR, Águas AC, Rainer A, Forte G. Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Basel). 2015;15(12):31142-31170. doi: 10.3390/s151229848
- Hu Y, Zhang H, Wang S, et al. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater. 2023;25:29-41. doi: 10.1016/j.bioactmat.2023.01.016
- Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. Cell Rep Methods. 2024;4(6):100779. doi: 10.1016/j.crmeth.2024.100779
- Garreta E, Moya-Rull D, Marco A, et al. Natural hydrogels support kidney organoid generation and promote in vitro angiogenesis. Adv Mater. 2024;36(34):e2400306. doi: 10.1002/adma.202400306
- Kong L, Zhao H, Wang F, et al. Endocrine modulation of brain-skeleton axis driven by neural stem cell-derived perilipin 5 in the lipid metabolism homeostasis for bone regeneration. Mol Ther. 2023;31(5):1293-1312. doi: 10.1016/j.ymthe.2023.02.004
- Xiong Y, Mi BB, Lin Z, et al. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: From mechanism to therapeutic opportunity. Mil Med Res. 2022;9(1):65. doi: 10.1186/s40779-022-00426-8
- Hu Y, Hu X, Luo J, et al. Liver organoid culture methods. Cell Biosci. 2023;13(1):197. doi: 10.1186/s13578-023-01136-x
- Fatehullah A, Tan SH, Barker N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016;18(3):246-254. doi: 10.1038/ncb3312
- Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2021;20(2):260-271. doi: 10.1038/s41563-020-00853-9
- Brandenberg N, Hoehnel S, Kuttler F, et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat Biomed Eng. 2020;4(9):863-874. doi: 10.1038/s41551-020-0565-2
- Bose S, Clevers H, Shen X. Promises and challenges of organoid-guided precision medicine. Med. 2021;2(9):1011-1026. doi: 10.1016/j.medj.2021.08.005
