Organoid research breakthroughs in 2024: A review

Organoid research has experienced significant advancements in 2024, revolutionizing the fields of disease modeling, drug discovery, and regenerative medicine. Key innovations include the refinement of culture protocols for generating more physiologically relevant organoids derived from a wide range of human tissues, facilitated by improved differentiation protocols for induced pluripotent stem cells and adult stem cells. These advancements have led to organoids that better mimic in vivo tissue architecture and function, making them more suitable for studying complex diseases. The integration of microfluidics and biomaterial scaffolds into organoid cultures has further enhanced the replication of organ-specific microenvironments. In addition, the application of cutting-edge genomic tools, such as CRISPR/Cas9 gene editing, single-cell RNA sequencing, and high-throughput screening, has enabled the generation of organoid models with precise genetic mutations, facilitating the exploration of disease mechanisms and the screening of therapeutic agents. Artificial intelligence and machine learning have played a pivotal role in analyzing organoid data, enabling high-throughput screening and the development of personalized treatment strategies. While challenges remain in scalability, reproducibility, and vascularization, the innovations made in 2024 have set the stage for future clinical applications of organoid technologies, offering new possibilities for personalized medicine, drug development, and regenerative therapies.
- Zeng G, Yu Y, Wang M, et al. Advancing cancer research through organoid technology. J Transl Med. 2024;22(1):1007. doi: 10.1186/s12967-024-05824-1
- Han X, Cai C, Deng W, et al. Landscape of human organoids: Ideal model in clinics and research. Innovation (Camb). 2024;5(3):100620. doi: 10.1016/j.xinn.2024.100620
- Polak R, Zhang ET, Kuo CJ. Cancer organoids 2.0: Modelling the complexity of the tumour immune microenvironment. Nat Rev Cancer. 2024;24(8):523-539. doi: 10.1038/s41568-024-00706-6
- Bai L, Wu Y, Li G, Zhang W, Zhang H, Su J. AI-enabled organoids: Construction, analysis, and application. Bioact Mater. 2024;31:525-548. doi: 10.1016/j.bioactmat.2023.09.005
- Du X, Chen Z, Li Q, et al. Organoids revealed: Morphological analysis of the profound next generation in-vitro model with artificial intelligence. Biodes Manuf. 2023;6(3):319-339. doi: 10.1007/s42242-022-00226-y
- Hauser PV. Advances in organoid research and developmental engineering. Bioengineering (Basel). 2024;11(12):1275. doi: 10.3390/bioengineering11121275
- Tong L, Cui W, Zhang B, et al. Patient-derived organoids in precision cancer medicine. Med. 2024;5(11):1351-1377. doi: 10.1016/j.medj.2024.08.010
- Bhattacharya R, Bose D, Kaur T, Patel R, Renuka O, Rodriguez RV. Model organoids: Integrated frameworks for the next frontier of healthcare advancements. Stem Cell Rev Rep. 2024;21:319-336. doi: 10.1007/s12015-024-10814-3
- Ge JY, Wang Y, Li QL, Liu FK, Lei QK, Zheng YW. Trends and challenges in organoid modeling and expansion with pluripotent stem cells and somatic tissue. PeerJ. 2024;12:e18422. doi: 10.7717/peerj.18422
- Bose S, Clevers H, Shen X. Promises and challenges of organoid-guided precision medicine. Med. 2021;2(9):1011-1026. doi: 10.1016/j.medj.2021.08.005
- Rauth S, Karmakar S, Batra SK, Ponnusamy MP. Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer. 2021;1875(2):188527. doi: 10.1016/j.bbcan.2021.188527
- Li Y, Saiding Q, Wang Z, Cui W. Engineered biomimetic hydrogels for organoids. Prog Mater Sci. 2024;141:101216. doi: 10.1016/j.pmatsci.2023.101216
- Qian X, Song H, Ming GL. Brain organoids: Advances, applications and challenges. Development. 2019;146(8):dev166074. doi: 10.1242/dev.166074
- Heinzelmann E, Piraino F, Costa M, et al. iPSC-derived and patient-derived organoids: Applications and challenges in scalability and reproducibility as pre-clinical models. Curr Res Toxicol. 2024;7:100197. doi: 10.1016/j.crtox.2024.100197
- Simões-Abade MBC, Patterer M, Nicaise AM, Pluchino S. Brain organoid methodologies to explore mechanisms of disease in progressive multiple sclerosis. Front Cell Neurosci. 2024;18:1488691. doi: 10.3389/fncel.2024.1488691
- Susaimanickam PJ, Kiral FR, Park IH. Region specific brain organoids to study neurodevelopmental disorders. Int J Stem Cells. 2022;15(1):26-40. doi: 10.15283/ijsc22006
- Miller DJ, Bhaduri A, Sestan N, Kriegstein A. Shared and derived features of cellular diversity in the human cerebral cortex. Curr Opin Neurobiol. 2019;56:117-124. doi: 10.1016/j.conb.2018.12.005
- Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: What have we learned? EMBO J. 2016;35(10):1021-1044. doi: 10.15252/embj.201593701
- Hendriks D, Pagliaro A, Andreatta F, et al. Human fetal brain self-organizes into long-term expanding organoids. Cell. 2024;187(3):712-732.e38. doi: 10.1016/j.cell.2023.12.012
- de Coppi P, Loukogeorgakis S, Götherström C, et al. Regenerative medicine: Prenatal approaches. Lancet Child Adolesc Health. 2022;6(9):643-653. doi: 10.1016/s2352-4642(22)00192-4
- Gerli MFM, Calà G, Beesley MA, et al. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat Med. 2024;30(3):875-887. doi: 10.1038/s41591-024-02807-z
- Heo JH, Kang D, Seo SJ, Jin Y. Engineering the extracellular matrix for organoid culture. Int J Stem Cells. 2022;15(1):60-69. doi: 10.15283/ijsc21190
- Chen Z, Du C, Liu S, et al. Progress in biomaterials inspired by the extracellular matrix. Giant. 2024;19:100323. doi: 10.1016/j.giant.2024.100323
- Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater. 2023;28:386-401. doi: 10.1016/j.bioactmat.2023.06.004
- Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y
- Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater. 2011;10(10):799-806. doi: 10.1038/nmat3101
- Manfrin A, Tabata Y, Paquet ER, et al. Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. Nat Methods. 2019;16(7):640-648. doi: 10.1038/s41592-019-0455-2
- Afting C, Walther T, Drozdowski OM, et al. DNA microbeads for spatio-temporally controlled morphogen release within organoids. Nat Nanotechnol. 2024;19(12):1849-1857. doi: 10.1038/s41565-024-01779-y
- Shi H, Kowalczewski A, Vu D, et al. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Med Novel Technol Devices. 2024;21:100276. doi: 10.1016/j.medntd.2023.100276
- Fernandes TG. Organoids as complex (bio)systems. Front Cell Dev Biol. 2023;11:1268540. doi: 10.3389/fcell.2023.1268540
- Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther. 2022;7(1):336. doi: 10.1038/s41392-022-01194-6
- Corsini NS, Knoblich JA. Human organoids: New strategies and methods for analyzing human development and disease. Cell. 2022;185(15):2756-2769. doi: 10.1016/j.cell.2022.06.051
- Lehmann R, Lee CM, Shugart EC, et al. Human organoids: A new dimension in cell biology. Mol Biol Cell. 2019;30(10):1129-1137. doi: 10.1091/mbc.E19-03-0135
- Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol. 2024;45(10):824-836. doi: 10.1016/j.it.2024.08.008
- Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: A manual to survive. Front Cell Neurosci. 2024;18:1419526. doi: 10.3389/fncel.2024.1419526
- Wang M, Zhang L, Novak SW, et al. Morphological diversification and functional maturation of human astrocytes in glia-enriched cortical organoid transplanted in mouse brain. Nat Biotechnol. 2025;43(1):52-62. doi: 10.1038/s41587-024-02157-8
- Kawasaki K, Toshimitsu K, Matano M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell. 2020;183(5):1420-1435.e21. doi: 10.1016/j.cell.2020.10.023
- Jdiaa SS, Mustafa RA, Yu ASL. Treatment of autosomal-dominant polycystic kidney disease. Am J Kidney Dis. 2024;85:491-500. doi: 10.1053/j.ajkd.2024.08.008
- St Pierre K, Cashmore BA, Bolignano D, et al. Interventions for preventing the progression of autosomal dominant polycystic kidney disease. Cochrane Database Syst Rev. 2024;10(10):CD010294. doi: 10.1002/14651858.CD010294.pub3
- Liu M, Zhang C, Gong X, et al. Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo. Cell Stem Cell. 2024;31(1):52-70.e8. doi: 10.1016/j.stem.2023.12.003
- Bogoslowski A, An M, Penninger JM. Incorporating immune cells into organoid models: Essential for studying human disease. Organoids. 2023;2(3):140-155. doi: 10.3390/organoids2030011
- Suhito IR, Sunil C, Tay A. Engineering human immune organoids for translational immunology. Bioact Mater. 2025;44:164-183. doi: 10.1016/j.bioactmat.2024.10.010
- Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front Immunol. 2018;9:1830. doi: 10.3389/fimmu.2018.01830
- Dart RJ, Zlatareva I, Vantourout P, et al. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science. 2023;381(6663):eadh0301. doi: 10.1126/science.adh0301
- Schutgens F, Clevers H. Human organoids: Tools for understanding biology and treating diseases. Annu Rev Pathol. 2020;15:211-234. doi: 10.1146/annurev-pathmechdis-012419-032611
- Recaldin T, Steinacher L, Gjeta B, et al. Human organoids with an autologous tissue-resident immune compartment. Nature. 2024;633(8028):165-173. doi: 10.1038/s41586-024-07791-5
- Takebe T, Wells JM, Helmrath MA, Zorn AM. Organoid center strategies for accelerating clinical translation. Cell Stem Cell. 2018;22(6):806-809. doi: 10.1016/j.stem.2018.05.008
- Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/ cartilage organoids: Strategy, progress, and application. Bone Res. 2024;12(1):66. doi: 10.1038/s41413-024-00376-y
- Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in cancer research. Exp Hematol Oncol. 2023;12(1):69. doi: 10.1186/s40164-023-00433-y
- Van de Wetering M, Francies Hayley E, Francis Joshua M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161(4):933-945. doi: 10.1016/j.cell.2015.03.053
- Wang H, Li X, You X, Zhao G. Harnessing the power of artificial intelligence for human living organoid research. Bioact Mater. 2024;42:140-164. doi: 10.1016/j.bioactmat.2024.08.027
- Blutt SE, Estes MK. Organoid models for infectious disease. Annu Rev Med. 2022;73:167-182. doi: 10.1146/annurev-med-042320-023055
- Zhang Y, Meng R, Sha D, et al. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol. 2024;14:1506606. doi: 10.3389/fonc.2024.1506606
- Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone organoids: Recent advances and future challenges. Adv Healthc Mater. 2024;13(5):e2302088. doi: 10.1002/adhm.202302088
- Torisawa YS, Spina CS, Mammoto T, et al. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. Nat Methods. 2014;11(6):663-669. doi: 10.1038/nmeth.2938
- Akiva A, Melke J, Ansari S, et al. An organoid for woven bone. Adv Funct Mater. 2021;31(17):2010524. doi: 10.1002/adfm.202010524
- Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741
- Olijnik AA, Rodriguez-Romera A, Wong ZC, et al. Generating human bone marrow organoids for disease modeling and drug discovery. Nat Protoc. 2024;19(7):2117- 2146. doi: 10.1038/s41596-024-00971-7
- Khan AO, Rodriguez-Romera A, Reyat JS, et al. Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies. Cancer Discov. 2023;13(2):364-385. doi: 10.1158/2159-8290.Cd-22-0199
- Ren X, Wang J, Wu Y, et al. One-pot synthesis of hydroxyapatite hybrid bioinks for digital light processing 3D printing in bone regeneration. J Mater Sci Technol. 2024;188:84-97. doi: 10.1016/j.jmst.2024.01.001
- Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36(30):2309875. doi: 10.1002/adma.202309875
- Wang J, Zhou D, Li R, et al. Protocol for engineering bone organoids from mesenchymal stem cells. Bioact Mater. 2025;45:388-400. doi: 10.1016/j.bioactmat.2024.11.017
- Fang H, Xu H, Yu J, Cao H, Li L. Human hepatobiliary organoids: Recent advances in drug toxicity verification and drug screening. Biomolecules. 2024;14(7):794. doi: 10.3390/biom14070794
- Qu Y, Ye J, Lin B, Luo Y, Zhang X. Organ mimicking technologies and their applications in drug discovery. Intell Pharm. 2023;1(2):73-89. doi: 10.1016/j.ipha.2023.05.003
- Pognan F, Beilmann M, Boonen HCM, et al. The evolving role of investigative toxicology in the pharmaceutical industry. Nat Rev Drug Discov. 2023;22(4):317-335. doi: 10.1038/s41573-022-00633-x
- Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. Nat Rev Bioeng. 2023;1(8):545-559. doi: 10.1038/s44222-023-00063-3
- Paulsen B, Velasco S, Kedaigle AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022;602(7896):268-273. doi: 10.1038/s41586-021-04358-6
- Pizzo L, Jensen M, Polyak A, et al. Rare variants in the genetic background modulate cognitive and developmental phenotypes in individuals carrying disease-associated variants. Genet Med. 2019;21(4):816-825. doi: 10.1038/s41436-018-0266-3
- Antón-Bolaños N, Faravelli I, Faits T, et al. Brain chimeroids reveal individual susceptibility to neurotoxic triggers. Nature. 2024;631(8019):142-149. doi: 10.1038/s41586-024-07578-8
- Blanco-González A, Cabezón A, Seco-González A, et al. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals (Basel). 2023;16(6):891. doi: 10.3390/ph16060891
- Maramraju S, Kowalczewski A, Kaza A, et al. AI-organoid integrated systems for biomedical studies and applications. Bioeng Transl Med. 2024;9(2):e10641. doi: 10.1002/btm2.10641
- Huang Y, Huang Z, Tang Z, et al. Research progress, challenges, and breakthroughs of organoids as disease models. Front Cell Dev Biol. 2021;9:740574. doi: 10.3389/fcell.2021.740574
- Zhang K, Yang X, Wang Y, et al. Artificial intelligence in drug development. Nat Med. 2025;31:45-59. doi: 10.1038/s41591-024-03434-4
- Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93. doi: 10.1016/j.drudis.2020.10.010
- Rudroff T. Artificial intelligence as a replacement for animal experiments in neurology: Potential, progress, and challenges. Neurol Int. 2024;16(4):805-820. doi: 10.3390/neurolint16040060
- Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. doi: 10.3390/pharmaceutics15071916
- Behravesh S, Yakes W, Gupta N, et al. Venous malformations: Clinical diagnosis and treatment. Cardiovasc Diagn Ther. 2016;6(6):557-569. doi: 10.21037/cdt.2016.11.10
- Pan Z, Yao Q, Kong W, et al. Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery. Cell Stem Cell. 2025;32:227-245.e9. doi: 10.1016/j.stem.2024.10.015
- Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis. 2024;11(2):614-632. doi: 10.1016/j.gendis.2023.02.052
- Sekine K. Human organoid and supporting technologies for cancer and toxicological research. Front Genet. 2021;12:759366. doi: 10.3389/fgene.2021.759366
- Rae C, Amato F, Braconi C. Patient-derived organoids as a model for cancer drug discovery. Int J Mol Sci. 2021;22(7):3483. doi: 10.3390/ijms22073483
- Jiang X, Oyang L, Peng Q, et al. Organoids: Opportunities and challenges of cancer therapy. Front Cell Dev Biol. 2023;11:1232528. doi: 10.3389/fcell.2023.1232528
- Rodrigues J, Heinrich MA, Teixeira LM, Prakash J. 3D in vitro model (R)evolution: Unveiling tumor-stroma interactions. Trends Cancer. 2021;7(3):249-264. doi: 10.1016/j.trecan.2020.10.009
- Tuveson D, Clevers H. Cancer modeling meets human organoid technology. Science. 2019;364(6444):952-955. doi: 10.1126/science.aaw6985
- Lorenzo-Martín LF, Hübscher T, Bowler AD, et al. Spatiotemporally resolved colorectal oncogenesis in mini-colons ex vivo. Nature. 2024;629(8011):450-457. doi: 10.1038/s41586-024-07330-2
- Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater. 2023;35(22):2205082. doi: 10.1002/adma.202205082