Advancing organoid development with 3D bioprinting

Organoids provide more realistic in vitro models that closely mimic their corresponding tissues or organs. Three-dimensional (3D) bioprinting allows for precise control over cell distribution, arrangement, and the regulation of cell behavior and interactions, offering flexibility and repeatability. By combining 3D bioprinting with organoid culture, optimal extracellular matrix conditions can be created, better replicating the complex interactions between cells and their environment. The integration of 3D bioprinting amplifies the scalability of organoids, facilitating the development of large-scale organ models that significantly enhance research capabilities. This review explores the crucial role of 3D bioprinting in organoid development, emphasizing its contributions to improving organoid structure and functionality. We discuss how this innovative approach supports the creation of well-defined physiological microenvironments, aids in the development of functional organoids, and enables high-throughput cultivation. Furthermore, we highlight the advantages of optimizing bioprinting strategies and bioinks to advance organoid applications. In addition, we examine the importance of refining 3D bioprinting devices to enhance organoid fabrication and application. Finally, we outline strategies for leveraging 3D bioprinting to further advance organoid research and its implications for regenerative medicine and disease modeling.
- Hofer M, Lutolf MP. Engineering organoids. Nat Rev Mater. 2021;6(5):402-420. doi: 10.1038/s41578-021-00279-y
- Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. Engineered materials for organoid systems. Nat Rev Mater. 2019;4(9):606-622. doi: 10.1038/s41578-019-0129-9
- Sato T, Vries RG, Snippert HJ, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. doi: 10.1038/nature07935
- Barker N, Huch M, Kujala P, et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25-36. doi: 10.1016/j.stem.2009.11.013
- Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun. 2021;12(1):4730.doi: 10.1038/s41467-021-24775-5
- Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol. 2015;33(11):1193-1200. doi: 10.1038/nbt.3392
- Tao T, Deng P, Wang Y, et al. Microengineered multi‐organoid system from hiPSCs to recapitulate human liver‐islet axis in normal and type 2 diabetes. Adv Sci. 2021;9(5):2103495. doi: 10.1002/advs.202103495
- Lewis-Israeli YR, Wasserman AH, Gabalski MA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12(1):5142. doi: 10.1038/s41467-021-25329-5
- Richards DJ, Li Y, Kerr CM, et al. Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng. 2020;4(4):446-462. doi: 10.1038/s41551-020-0539-4
- Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol Med. 2017;23(5):393-410. doi: 10.1016/j.molmed.2017.02.007
- Cruz-Acuña R, Quirós M, Farkas AE, et al. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat Cell Biol. 2017;19(11):1326-1335. doi: 10.1038/ncb3632
- Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-926. doi: 10.1126/science.aao2774
- Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv. 2024;10:eadk6610. doi: 10.1126/sciadv.adk6610
- Qin C, Wu C. Inorganic biomaterials‐based bioinks for three‐dimensional bioprinting of regenerative scaffolds. View. 2022;3(4):20210018. doi: 10.1002/viw.20210018
- Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: Strategies to achieve organ function. Chem Rev. 2020;120(19):11093-11127. doi: 10.1021/acs.chemrev.0c00145
- Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog in Polym Sci. 2012;37(8):1079-1104. doi: 10.1016/j.progpolymsci.2011.11.007
- Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthcare Mater. 2016;6(1):1601118. doi: 10.1002/adhm.201601118
- Cadena M, Ning L, King A, et al. 3D bioprinting of neural tissues. Adv Healthcare Mater. 2020;10(15):2001600. doi: 10.1002/adhm.202001600
- Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
- Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217-239. doi: 10.1016/j.biotechadv.2016.12.006
- Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
- Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small joint organoids 3D bioprinting: Construction strategy and application. Small. 2023;20(8):2302506. doi: 10.1002/smll.202302506
- Lee J, Park D, Seo Y, Chung JJ, Jung Y, Kim SH. Organ‐level functional 3D tissue constructs with complex compartments and their preclinical applications. Adv Mater. 2020;32(51):2002096. doi: 10.1002/adma.202002096
- Urciuolo A, Giobbe GG, Dong Y, et al. Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures. Nat Commun. 2023;14(1):3128. doi: 10.1038/s41467-023-37953-4
- Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer. Nature. 2020;588(7839):664-669. doi: 10.1038/s41586-020-3034-x
- Tan N, Yang YY. Building blocks to the future of regenerative medicine: Organoid bioprinting. Matter. 2021;4(8):2659-2661. doi: 10.1016/j.matt.2021.06.042
- Bernal PN, Bouwmeester M, Madrid‐Wolff J, et al. Volumetric bioprinting of organoids and optically tuned hydrogels to build liver‐like metabolic biofactories. Adv Mater. 2022;34(15):2110054. doi: 10.1002/adma.202110054
- Wang X, Luo Y, Ma Y, Wang P, Yao R. Converging bioprinting and organoids to better recapitulate the tumor microenvironment. Trends Biotechnol. 2024;42(5):648-663. doi: 10.1016/j.tibtech.2023.11.006
- Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18(10):573-584. doi: 10.1038/nrn.2017.107
- Heinrich MA, Bansal R, Lammers T, Zhang YS, Schiffelers RM, Prakash J. 3D‐bioprinted Mini‐brain: A glioblastoma model to study cellular interactions and therapeutics. Adv Mater. 2019;31(14):1806590. doi: 10.1002/adma.201806590
- Leonardi I, Gao IH, Lin WY, et al. Mucosal fungi promote gut barrier function and social behavior via type 17 immunity. Cell. 2022;185(5):831-846.e14. doi: 10.1016/j.cell.2022.01.017
- Ji X, Zhu L, Chang K, et al. Chitooligosaccahrides: Digestion characterization and effect of the degree of polymerization on gut microorganisms to manage the metabolome functional diversity in vitro. Carbohyd Polym. 2022;275:1187162. doi: 10.1016/j.carbpol.2021.118716
- Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2020;20(1):22-29. doi: 10.1038/s41563-020-00803-5
- Ramli MNB, Lim YS, Koe CT, et al. Human pluripotent stem cell-derived organoids as models of liver disease. Gastroenterology. 2020;159(4):1471-1486. doi: 10.1053/j.gastro.2020.06.010
- Wang S, Wang X, Tan Z, et al. Human ESC-derived expandable hepatic organoids enable therapeutic liver repopulation and pathophysiological modeling of alcoholic liver injury. Cell Res. 2019;29(12):1009-1026. doi: 10.1038/s41422-019-0242-8
- Sampaziotis F, Muraro D, Tysoe OC, et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science. 2021;371:839-846. doi: 10.1126/science.aaz6964
- Yang H, Sun L, Pang Y, et al. Three-dimensional bioprinted hepatorganoids prolong survival of mice with liver failure. Gut. 2021;70(3):567-574. doi: 10.1136/gutjnl-2019-319960
- Deng B, Ma Y, Huang J, et al. Revitalizing liver function in mice with liver failure through transplantation of 3D-bioprinted liver with expanded primary hepatocytes. Sci Adv. 2024;10:eado1550. doi: 10.1126/sciadv.ado1550
- Shrestha S, Lekkala VKR, Acharya P, Kang SY, Vanga MG, Lee MY. Reproducible generation of human liver organoids (HLOs) on a pillar plate platform via microarray 3D bioprinting. Lab Chip. 2024;24(10):2747-2761. doi: 10.1039/d4lc00149d
- Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation. Nat Mater. 2020;20(2):260-271. doi: 10.1038/s41563-020-00853-9
- Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models. Proc Natl Acad Sci. 2019;116(12):5399-5404. doi: 10.1073/pnas.1815208116
- Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials. 2022;280:121298. doi: 10.1016/j.biomaterials.2021.121298
- Fang Y, Guo Y, Wu B, et al. Expanding embedded 3D bioprinting capability for engineering complex organs with freeform vascular networks. Adv Mater. 2023;35(22):2205082. doi: 10.1002/adma.202205082
- Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45-59. doi: 10.1016/j.biomaterials.2016.09.003
- Qin C, Ma J, Chen L, et al. 3D bioprinting of multicellular scaffolds for osteochondral regeneration. Mater Today. 2021;49:68-84. doi: 10.1016/j.mattod.2021.04.016
- Ha Y, Ma X, Li S, et al. Bone microenvironment‐mimetic scaffolds with hierarchical microstructure for enhanced vascularization and bone regeneration. Adv Funct Mater. 2022;32(20):2200011. doi: 10.1002/adfm.202200011
- Zhang J, Tong D, Song H, et al. Osteoimmunity‐regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv Mater. 2022;34(36):2202044. doi: 10.1002/adma.202202044
- Li C, Zhang W, Nie Y, et al. Integrated and bifunctional bilayer 3D printing scaffold for osteochondral defect repair. Adv Funct Mater. 2023;33(20):2214158. doi: 10.1002/adfm.202214158
- Zhang M, Lin R, Wang X, et al. 3D printing of haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6:eaaz6725. doi: 10.1126/sciadv.aaz6725
- Wang J, Wu Y, Li G, et al. Engineering large‐scale self‐mineralizing bone organoids with bone matrix‐inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024;36(30):2309875. doi: 10.1002/adma.202309875
- Xie C, Liang R, Ye J, et al. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022;288:121741. doi: 10.1016/j.biomaterials.2022.121741
- Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407-418. doi: 10.1038/s41568-018-0007-6
- Kim J, Kim J, Gao G, et al. Bioprinted organoids platform with tumor vasculature for implementing precision personalized medicine targeted towards gastric cancer. Adv Funct Mater. 2023;34(11):2306676. doi: 10.1002/adfm.202306676
- Yi HG, Jeong YH, Kim Y, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019;3(7):509-519. doi: 10.1038/s41551-019-0363-x
- Dai R, Chen W, Chen Y, et al. 3D bioprinting platform development for high-throughput cancer organoid models construction and drug evaluation. Biofabrication. 2024;16(3):035026. doi: 10.1088/1758-5090/ad51a6
- Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature. 2016;539(7630):560-564. doi: 10.1038/nature20168
- Jian H, Li X, Dong Q, Tian S, Bai S. In vitro construction of liver organoids with biomimetic lobule structure by a multicellular 3D bioprinting strategy. Cell Prolif. 2023;56(5):e13465. doi: 10.1111/cpr.13465
- Zhang T, Sheng S, Cai W, et al. 3-D bioprinted human-derived skin organoids accelerate full-thickness skin defects repair. Bioact Mater. 2024;42:257-269. doi: 10.1016/j.bioactmat.2024.08.036
- Alonzo M, El Khoury R, Nagiah N, Thakur V, Chattopadhyay M, Joddar B. 3D biofabrication of a cardiac tissue construct for sustained longevity and function. ACS Appl Mater Interfaces. 2022;14(19):21800-21813. doi: 10.1021/acsami.1c23883
- Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36(5):432-441. doi: 10.1038/nbt.4127
- Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci Adv. 2019;5:eaaw2459. doi: 10.1126/sciadv.aaw2459
- Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021;12(1):753. doi: 10.1038/s41467-021-21029-2
- Li Y, Cheng S, Shi H, et al. 3D embedded bioprinting of large-scale intestine with complex structural organization and blood capillaries. Biofabrication. 2024;16(4):045001. doi: 10.1088/1758-5090/ad5b1b
- Griffanti G, Rezabeigi E, Li J, Murshed M, Nazhat SN. Rapid biofabrication of printable dense collagen bioinks of tunable properties. Adv Funct Mater. 2019;30(4):1903874. doi: 10.1002/adfm.201903874
- Skylar-Scott MA, Huang JY, Lu A, et al. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng. 2022;6(4):449-462. doi: 10.1038/s41551-022-00856-8
- Jeon O, Lee YB, Jeong H, Lee SJ, Wells D, Alsberg E. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries. Mater Horiz. 2019;6(8):1625-1631. doi: 10.1039/c9mh00375d
- Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2023;165:86-101. doi: 10.1016/j.actbio.2022.06.036
- Mollica PA, Booth-Creech EN, Reid JA, et al. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 2019;95:201-213. doi: 10.1016/j.actbio.2019.06.017
- Shi W, Mirza S, Kuss M, et al. Embedded bioprinting of breast tumor cells and organoids using low‐concentration collagen‐based bioinks. Adv Healthcare Mater. 2023;12(26):2300905. doi: 10.1002/adhm.202300905
- Bao L, Cui X, Wang X, et al. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano. 2021;15(10):15858-15873. doi: 10.1021/acsnano.1c03707
- Roth JG, Brunel LG, Huang MS, et al. Spatially controlled construction of assembloids using bioprinting. Nat Commun. 2023;14(1):4346. doi: 10.1038/s41467-023-40006-5
- Ruan H, Li Y, Zheng D, et al. Engineered extracellular vesicles for ischemic stroke treatment. Innovation (Camb). 2023;16:100394. doi: 10.1016/j.xinn.2023.100394
- Gaharwar AK, Mihaila SM, Swami A, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2023;35(22):3329-3336. doi: 10.1002/adma.202300774
- Zhang H, Qin C, Shi Z, et al. Bioprinting of inorganic-biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. Natl Sci Rev. 2024;11(4):nwae035. doi: 10.1093/nsr/nwae035
- Ma W, Zheng Y, Yang G, et al. A bioactive calcium silicate nanowire-containing hydrogel for organoid formation and functionalization. Mater Horiz. 2024;11(12):2957-2973. doi: 10.1039/d4mh00228h
- Zhang Z, Gao S, Hu YN, et al. Ti3C2TxMXene composite 3D hydrogel potentiates mTOR signaling to promote the generation of functional hair cells in cochlea organoids. Adv Sci. 2022;9(32):2203557. doi: 10.1002/advs.202203557
- Zhang H, Qin C, Zhang M, et al. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today. 2022;46:101584. doi: 10.1016/j.nantod.2022.101584
- Ma X, Qu X, Zhu W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113(8):2206-2211. doi: 10.1073/pnas.1524510113
- Chen C, Rengarajan V, Kjar A, Huang Y. A matrigel-free method to generate matured human cerebral organoids using 3D-printed microwell arrays. Bioact Mater. 2021;6(4):1130-1139. doi: 10.1016/j.bioactmat.2020.10.003
- Tebon PJ, Wang B, Markowitz AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat Commun. 2023;14(1):3168. doi: 10.1038/s41467-023-38832-8
- Cadena MA, Sing A, Taylor K, et al. A 3D bioprinted cortical organoid platform for modeling human brain development. Adv Healthcare Mater. 2024;13(27):2401603. doi: 10.1002/adhm.202401603
- Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8):1615-1629. doi: 10.1039/d1lc00535a
- Xie M, Gao Q, Zhao H, et al. Electro‐assisted bioprinting of low‐concentration GelMA microdroplets. Small. 2018;15(4):1804216. doi: 10.1002/smll.201804216
- Ayan B, Heo DN, Zhang Z, et al. Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv. 2020;6:eaaw5111. doi: 10.1126/sciadv.aaw5111
- Guo F, Mao Z, Chen Y, et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci. 2016;113(6):1522-1527. doi: 10.1073/pnas.1524813113
- Chen H, Wu Z, Gong Z, et al. Acoustic bioprinting of patient‐derived organoids for predicting cancer therapy responses. Adv Healthcare Mater. 2022;11(13):2102784. doi: 10.1002/adhm.202102784
- Lee S, Chung WG, Jeong H, et al. Electrophysiological analysis of retinal organoid development using 3D microelectrodes of liquid metals. Adv Mater. 2024;36(35):2404428. doi: 10.1002/adma.202404428
- Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-dimensional-printed electrochemical multiwell plates for monitoring food intolerance from intestinal organoids. ACS Sensors. 2023;8(2):712-720. doi: 10.1021/acssensors.2c02245
- Kopic I, Dedousi P, Schmidt S, et al. Inkjet‐printed 3D electrode arrays for recording signals from cortical organoids. Adv Mater Technol. 2024;9(22):2400645. doi: 10.1002/admt.202400645
- Aisenbrey EA, Murphy WL. Synthetic alternatives to matrigel. Nat Rev Mater. 2020;5(7):539-551. doi: 10.1038/s41578-020-0199-8
- Below CR, Kelly J, Brown A, et al. A Microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat Mater. 2021;21(1):110-119. doi: 10.1038/s41563-021-01085-1
- Chrisnandy A, Blondel D, Rezakhani S, Broguiere N, Lutolf MP. Synthetic dynamic hydrogels promote degradation-independent in vitro organogenesis. Nat Mater. 2021;21(4):479-487. doi: 10.1038/s41563-021-01136-7
- Pati F, Gantelius J, Svahn HA. 3D bioprinting of tissue/organ models. Angew Chem Int Edit. 2016;55(15):4650-4665. doi: 10.1002/anie.201505062
- Rawal P, Tripathi DM, Ramakrishna S, Kaur S. Prospects for 3D bioprinting of Organoids. Bio-Des Manuf. 2021;4(3):627-640. doi: 10.1007/s42242-020-00124-1
- Li S, Li J, Xu J, et al. Removal‐free and multicellular suspension bath‐based 3D bioprinting. Adv Mater. 2024;2406891. doi: 10.1002/adma.202406891
- Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Adv Mater. 2014;26(19):3124-3130. doi: 10.1002/adma.201305506
- Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
- Yap KK, Gerrand YW, Dingle AM, Yeoh GC, Morrison WA, Mitchell GM. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. Biomaterials. 2020;251:120091. doi: 10.1016/j.biomaterials.2020.120091
- Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019;16(3):255-262. doi: 10.1038/s41592-019-0325-y
- Thundyil J, Pavlovski D, Sobey CG, Arumugam TV. Adiponectin receptor signalling in the brain. Br J Pharmacol. 2011;165(2):313-327. doi: 10.1111/j.1476-5381.2011.01560.x
- Puschhof J, Pleguezuelos-Manzano C, Clevers H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe. 2021;29(6):867-878. doi: 10.1016/j.chom.2021.04.002