Influence of illumination on eco-friendly titanium dioxide/epoxy nanocomposite-based triboelectric nanogenerators
Triboelectric nanogenerators (TENGs) based on titanium dioxide (TiO2)/epoxy nanocomposites have attracted increasing interest as self-powered systems capable of harvesting mechanical friction and light energy for sustainable electricity generation. In this study, a photoinduced TENG was developed using TiO2/epoxy nanocomposites with a polyethylene terephthalate charge collector. Scanning electron microscopy and X-ray diffraction analyses were conducted to evaluate the structural and morphological properties of the nanocomposite, revealing the presence of TiO2 nanoparticles with an anatase crystal structure. Ultraviolet–visible spectroscopy was employed to investigate the optical properties of the nanocomposite, identifying an optical band gap energy of 3.52 eV. In addition, Fourier transform infrared spectroscopy was used to determine chemical bonds and functional groups. Epoxy serves as the matrix material, binding the TiO2 nanoparticles and providing mechanical integrity to the composite film. It ensures uniform dispersion of TiO2 nanoparticles and offers a flexible yet robust substrate essential for the repeated contact–separation cycles of TENG operation. The TiO2/epoxy nanocomposite, used as the electrode for the TENG device, was created by incorporating TiO2 nanoparticles into the epoxy resin. Without ultraviolet illumination, the TENG devices generated output voltages of 25, 45, 50, and 55 V at TiO2 concentrations of 0, 2, 3, and 4 wt%, respectively. Under ultraviolet illumination, the corresponding voltages increased to 65, 75, 77, and 80 V. The highest voltage of 80 V was obtained for the device containing 4 wt% TiO2. These findings provide valuable insights into the structural, morphological, optical, and chemical characteristics of the nanocomposite, supporting the development of effective and sustainable power sources.

- Basu R, Iannacchione GS. Dielectric response of multiwalled carbon nanotubes as a function of applied ac-electric fields. J Appl Phys. 2008;104(11):114107. doi: 10.1063/1.3035963
- Chaturvedi AK, Badatya S, Pappu A, Srivastava AK, Gupta MK. Sustainable robust waste-recycled ocean water-resistant fly ash-carbon nanotube nanocomposite-based triboelectric nanogenerator. Sustain Energy Fuels. 2023;7(7):1735-1746. doi: 10.1039/D2SE01698B
- Homes CC, Vogt T. Doping for superior dielectrics. Nat Mater. 2013;12(9):782-783. doi: 10.1038/nmat3744
- Ioannou G, Patsidis A, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos Part A Appl Sci Manuf. 2011;42(1):104-110. doi: 10.1016/j.compositesa.2010.10.003
- Jannesari M, Asadian E, Ejehi F, et al. Boosting on-demand antibacterial activity using electrical stimulations from polypyrrole-graphene oxide triboelectric nanogenerator. Nano Energy. 2023;112:108463. doi: 10.1016/j.nanoen.2023.108463
- Khan M, Khurram AA, Li T, et al. Synergistic effect of organic and inorganic nanofillers on the dielectric and mechanical properties of epoxy composites. J Mater Sci Technol. 2018;34(12):2424-2430. doi: 10.1016/j.jmst.2018.03.044
- Aazem I, Mathew DT, Radhakrishnan S, et al. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv. 2022;12(17):10545-10572. doi: 10.1039/D2RA00017B
- Lee K, Sahu M, Hajra S, Mohanta K, Kim HJ. Effect of sintering temperature on the electrical and gas sensing properties of tin oxide powders. Ceram Int. 2021;47(16):22794-22800. doi: 10.1016/j.ceramint.2021.05.050
- Rabenok EV, Novikov GF, Bogdanova LM, Bukichev YS, Dzhardimalieva GI. Temperature dependence of direct current conductivity in TiO2/epoxy polymer dielectric nanocomposites. Russ J Phys Chem A. 2023;97(1):186-192. doi: 10.1134/S0036024423010200
- Sorin ES, Baimuratova RK, Uflyand IE, et al. New self-healing metallosupramolecular copolymers with a complex of cobalt acrylate and 4’-phenyl-2,2’:6’,2”-terpyridine. Polymers (Basel). 2023;15(6):1472. doi: 10.3390/polym15061472
- Behera SA, Hajra S, Panda S, Amanat A, Achary PGR. Structural and electrical properties of 0.98(K0.5Na0.5NbO3)- 0.02(Bi0.5Na0.5TiO3) ceramics. J Met Mater Miner. 2023;33(4):1894.
- Bunriw W, Harnchana V, Chanthad C, et al. TiO2/Ag hybrid filler with synergistic effect of dielectric modulation and photocharge generation in natural rubber-based triboelectric nanogenerator. Mater Res Bull. 2025;193:113682. doi: 10.1016/j.materresbull.2024.113682
- Wang J, Liu S, Wang J, Hao H, Zhao L, Zhai J. Improving dielectric properties and energy storage performance of PVDF nanocomposite by surface-modified SrTiO3 nanoparticles. J Alloys Compd. 2017;726:587-592. doi: 10.1016/j.jallcom.2017.07.029
- Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today. 2019;30:34-51. doi: 10.1016/j.mattod.2019.05.016
- Wang S, Lin L, Wang ZL. Triboelectric nanogenerators as self-powered active sensors. Nano Energy. 2015;11:436-462. doi: 10.1016/j.nanoen.2014.10.034
- Parimalam M, Islam MR, Yunus RM. Effects of nanosilica, zinc oxide, and titanium oxide on the performance of epoxy hybrid nanocoating. Polym Test. 2018;70:197-207. doi: 10.1016/j.polymertesting.2018.07.017
- Noman MT, Ashraf MA, Ali A. Synthesis and applications of nano-TiO2: A review. Environ Sci Pollut Res Int. 2019;26:3262-3291. doi: 10.1007/s11356-018-3877-6
- Pandey P, Thapa K, Ojha GP, et al. Metal-organic frameworks-based triboelectric nanogenerator powered visible light communication system for wireless human-machine interactions. Chem Eng J. 2023;452:139209. doi: 10.1016/j.cej.2022.139209
- Patsidis A, Psarras GC. Dielectric behaviour and functionality of polymer matrix-ceramic BaTiO3 composites. Express Polym Lett. 2008;5(10):691-701. doi: 10.3144/expresspolymlett.2008.86
- Prateek TV, Kumar V. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: Synthesis, dielectric properties, and future aspects. Chem Rev. 2016;116(7):4260-4317. doi: 10.1021/acs.chemrev.5b00361
- Babu A, Bochu L, Potu S, et al. Facile direct growth of ZIF-67 metal-organic framework for triboelectric nanogenerators and their application in the Internet of Vehicles. ACS Sustainable Chem Eng. 2023;11(47):16806-16817. doi: 10.1021/acssuschemeng.3c05925
- Wu Z, Cheng T, Wang ZL. Self-powered sensors and systems based on nanogenerators. Sensors (Basel). 2020;20(10):2925. doi: 10.3390/s20102925
- Xu L, Chen Y, Yu M, et al. NIR light-induced rapid self-healing hydrogel toward multifunctional applications in sensing. Nano Energy. 2023;107:108119. doi: 10.1016/j.nanoen.2022.108119
- Yin L, Wang Q, Zhao H, Bai J. Improved energy density obtainedin trilayered poly(vinylidene fluoride)-based composites by introducing two-dimensional BN and TiO2 nanosheets. ACS Appl Mater Interfaces. 2023;15(12):16079-16089. doi: 10.1021/acsami.2c21842
- Wen Z, Shen Q, Sun X. Nanogenerators for self-powered gas sensing. Nano Micro Lett. 2017;9(4):45. doi: 10.1007/s40820-017-0146-y
- Islam MR, Parimalam M, Sumdani MG, Taher MA, Asyadi F, Yenn TW. Rheological and antimicrobial properties of epoxy-based hybrid nanocoatings. Polym Test. 2020;81:106202. doi: 10.1016/j.polymertesting.2019.106202
- Hanny A, Islam MR, Sumdani MG, Rashidi NM. Effects of sintering on the properties of epoxy composites reinforced with chicken bone-based hydroxyapatites. Polym Test. 2019;78:105987. doi: 10.1016/j.polymertesting.2019.105987
- Baimuratova RK, Zhinzhilo VA, Uflyand IE, et al. Low-temperature synthesis of metal-organic coordination polymers based on oxo-centered iron complexes: Magnetic and adsorption properties. Russ J Phys Chem A. 2023;97(4):735-748. doi: 10.1134/S0036024423040109
- Guo N, DiBenedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ. Nanoparticle size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: Experiment and theory. Chem Mater. 2010;22(4):1567-1578. doi: 10.1021/cm902560m
- Guo R, Luo H, Liu W, et al. High energy density in PVDF nanocomposites using an optimized nanowire array. Phys Chem Chem Phys. 2018;20(26):18031-18037. doi: 10.1039/C8CP01671A
- Hatta FF, Mohammad Haniff MAS, Mohamed MA. A review on applications of graphene in triboelectric nanogenerators. Int J Energy Res. 2022;46(2):544-576. doi: 10.1002/er.7187
- Zha JW, Song HT, Dang ZM, Shi CY, Bai J. Mechanism analysis of improved corona-resistant characteristic in polyimide/TiO2 nanohybrid films. Appl Phys Lett. 2008;93(19):192911. doi: 10.1063/1.3037074
- Zhang YH, Dang ZM, Xin JH, et al. Dielectric properties of polyimide–mica hybrid films. Macromol Rapid Commun. 2005;26(18):1473-1477. doi: 10.1002/marc.200500387
- Zheng H, Wu H, Yi Z, et al. Remote-controlled droplet chains-based electricity generators. Adv Energy Mater. 2023;13(10):2203825. doi: 10.1002/aenm.202203825
- Parimalam M, Islam MR, Yunus RM. Effects of nanosilica and titanium oxide on the performance of epoxy-amine nanocoatings. J Appl Polym Sci. 2019;136(35):47901. doi: 10.1002/app.47901
- Yang L, Wang H, Fang S, Li M. Research progress on energy storage performance enhancement strategies for polyvinylidene fluoride-based composites. J Alloys Compd. 2023;960:170831. doi: 10.1016/j.jallcom.2022.170831
- Yu E, Zhang Q, Xu N, Yang H. F-TiO2/P(VDF-HFP) hybrid films with enhanced dielectric permittivity and low dielectric loss. RSC Adv. 2017;7(7):3949-3957. doi: 10.1039/C6RA27441C
- Zha JW, Dang ZM, Zhou T, Song HT, Chen G. Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process. Synth Met. 2010;160(23-24):2670-2674. doi: 10.1016/j.synthmet.2010.09.008
- Bukichev YS, Bogdanova LM, Spirin MG, Shershnev VA, Shilov GV, Dzhardimalieva GI. Composite materials based on epoxy matrix and titanium dioxide (IV) nanoparticles: Synthesis, microstructure and properties. Metallurgy. 2021;28(2):224-237.
- Chen X, Mao SS. Titanium dioxide Nanomaterials: Synthesis, properties, modifications and applications. Chem Rev. 2007;107:2891-2959. doi: 10.1021/cr0500535
- Van de Lagemaat J, Park NG, Frank AJ. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B. 2000;104(9):2044-2050. doi: 10.1021/jp993803d
- Zaban A, Meier A, Gregg BA. Electric potential distribution and short-range screening in nanoporous TiO2 electrodes. J Phys Chem B. 1997;101(40):7985-7991. doi: 10.1021/jp973142f
- Liu H, Feng Y, Shao J, et al. Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. Nano Energy. 2020;70:104499. doi: 10.1016/j.nanoen.2020.104499
- Yadav P, Sahay K, Srivastava M, Verma A, Yadav BC. Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap. Front Energy. 2023;17:1-24. doi: 10.1007/s11708-023-0896-2
- Yadav P, Sahay K, Verma A, Maurya DK, Yadav BC. Applications of multifunctional triboelectric nanogenerator (TENG) devices: Materials and prospects. Sustain Energy Fuels. 2023;7(16):3796-3831. doi: 10.1039/D3SE00788E
- Park H-W, Huynh ND, Kim W, et al. Effects of embedded TiO2-x nanoparticles on triboelectric nanogenerator performance. Micromachines. 2018;9(8):407. doi: 10.3390/mi9080407
- Bhatta S, Mitra R, Ramadoss A, Manju U. Enhanced voltage response in TiO2 nanoparticle embedded piezoelectric nanogenerator. Nanotechnology. 2022;33(33):335402. doi: 10.1088/1361-6528/ac8bda
- Yu X, Han X, Zhao Z, et al. Hierarchical TiO2 nanowire/ graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy. 2015;11:19-27. doi: 10.1016/j.nanoen.2014.11.009
- Kulkarni ND, Kumari P. Development of highly flexible PVDF-TiO2 nanocomposites for piezoelectric nanogenerator applications. Mater Res Bull. 2023;157:112039. doi: 10.1016/j.materresbull.2022.112039
- Bunriw W, Harnchana V, Chanthad C, Huynh VN. Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator application. Polymers (Basel). 2021;13(13):2213. doi: 10.3390/polym13132213
- Huo Z, Kim YJ, Chen Y, et al. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy. Front Environ Sci Eng. 2023;17(10):118.
- Alam MM, Sultana A, Mandal D. Biomechanical and acoustic energy harvesting from TiO2 nanoparticle modulated PVDF nanofiber made high performance nanogenerator. ACS Appl Energy Mater. 2018;1(7):3103-3112. doi: 10.1021/acsaem.8b00613
