AccScience Publishing / EJMO / Volume 8 / Issue 3 / DOI: 10.14744/ejmo.2024.77901
REVIEW

Familial Hereditary Prostate Cancer: Genetic, Screening, and Treatment Strategies 

Maryam Aghasipour1 Fatemeh Asadian2 Seyed Alireza Dastgheib3 Ahmad Shirinzadeh-Dastgiri4 Mohammad Vakili-Ojarood5 Nima Narimani6 Mohammad Mehdi Atarod6 Seyed Masoud Haghighikian4 Maedeh Barahman7 Ali Masoudi8 Amirmasoud Shiri9 Kazem Aghili10 Hossein Neamatzadeh11
Show Less
1 Department of Cancer Biology, University of Cincinnati Faculty of Medicine, Ohio, USA
2 Department of Medical Laboratory Sciences, Shiraz University of Medical Sciences Faculty of Paramedical Science, Shiraz, Iran
3 Department of Medical Genetics, Shiraz University of Medical Sciences Faculty of Medicine, Shiraz, Iran
4 Department of Surgery University of Medical Sciences Faculty of Medicine, Tehran, Iran
5 Department of Surgery, Ardabil University of Medical Sciences Faculty of Medicine, Ardabil, Iran
6 Department of Urology University of Medical Sciences Faculty of Medicine, Tehran, Iran
7 Department of Radiation Oncology, Firoozgar Clinical Research Development Center University of Medical Sciences, Tehran, Iran
8 General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
9 General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
10 Department of Radiology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
11 Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
EJMO 2024, 8(3), 250–266; https://doi.org/10.14744/ejmo.2024.77901
Submitted: 29 March 2024 | Accepted: 4 July 2024 | Published: 10 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Genetic testing for prostate cancer (PrCa) has become more common in clinical practice due to the availability of targeted therapies for specific subgroups based on genetic characteristics. This requires examining multiple genes to enable more precise treatment sequences. Identifying hereditary PrCa can guide treatment decisions and impact cancer screening for patients and their relatives. Some mutations discovered through genetic testing may be hereditary, thus requiring germline testing from normal tissue within the framework of clinical counseling. Germline testing can provide valuable information for PrCa patients in terms of treatment options and screening for other cancers in their relatives. Guidelines suggest genetic testing for all individuals with metastatic PrCa and also consider family history and tumor features for broader testing criteria. BRCA2, the gene most strongly linked to inherited PrCa, is associated with poorer survival outcomes when deficient. Targeted therapies such as poly-ADP ribose polymerase inhibitors and platinum-based chemotherapy have shown promise in treating cancer cells with BRCA1/2 deficiencies. The increasing role of genetic testing in PrCa indicates the necessity to expand its indications and consider treatment implications for metastatic PrCa patients, as well as cancer risk assessment for early-stage disease. The collaboration of experts in molecular pathology, bioinformatics, biology, and genetic counseling is vital for the evolving landscape of PrCa care. 

Keywords
Familial
genetic
prostate cancer
screening
treatment
Conflict of interest
None declared.
References

1.Abedinzadeh M, Ghodsian M, Dastgheib SA, Jafari-Nedooshan J, Zare M, Heiranizadeh N, et al. Association of interleukine-18 polymorphisms with susceptibility to prostate cancer in Iranian population. Neoplasma 2020;67:644-9. 

2. Abedinzadeh M, Dastgheib SA, Maleki H, Heiranizadeh N, Zare M, Jafari-Nedooshan J, et al. Association of endothelial nitric oxide synthase gene polymorphisms with susceptibility to prostate cancer: A comprehensive systematic review and meta-analysis. Urol J 2020;17:329-37. 

3. Guzman-Esquivel J, Murillo-Zamora E, Ortiz-Mesina M, Galvan-Salazar HR, De-Leon-Zaragoza L, Casarez-Price JC, et al. Regional and national burden of prostate cancer: incidence, mortality, years of life lost, and disability-adjusted life years, in Mexico and Latin America from 1990 to 2019. Int Urol Nephrol 2023;55:2155-60. 

4. Manoharan G, Gottam B. The pathophysiologic basis of prostate cancer review. Int J Sci Res Arch 2022;7:213-9. 

5. Abedinzadeh M, Zare-Shehneh M, Neamatzadeh H, Abedinzadeh M, Karami H. Association between MTHFR C677T polymorphism and risk of prostate cancer: Evidence from 22 studies with 10,832 cases and 11,993 controls. Asian Pac J Cancer Prev 2015;16:4525-30. 

6. Abedinzadeh M, Moghimi M, Dastgheib SA, Maleki H, Salehi E, Zare M, et al. Association of NAD (P) H quinine oxidoreductase 1 rs1800566 polymorphism with bladder and prostate cancers - A systematic review and meta-analysis. Klin Onkol 2020;33:92-100. 

7. Potter SR, Partin AW. Hereditary and familial prostate cancer: Biologic aggressiveness and recurrence. Rev Urol 2000;2:35-6. 

8. Keshvari A, Mollamohammadi L, Keramati MR, Behboudi B, Fazeli MS, Kazemeini A, et al. Assessment of the efficacy of handmade vacuum-assisted sponge drain for treatment of anastomotic leakage after low anterior rectal resection. Updates Surg 2023;75:847-54. 

9. Magi-Galluzzi C, Przybycin CG, McKenney JK. Genetic determinants of familial and hereditary prostate cancer. In: MagiGalluzzi C, Przybycin CG, editors. Genitourinary Pathology. New York: Springer; 2015. pp. 113–22. 

10. Suzuki K, Matsui H, Ohtake N. Clinical and basic aspects of familial prostate cancer. 2013;40:159-63. Japanese. 

11. Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res 2013;41:D920-4. 

12. Ghasemlouei A, Naseri A, Ashjaei A, Sadeghi S, Keshvari A. Evaluation surgical strategies in perianal fistulas treatment: Efficacy draining seton compared to other surgical approaches; a case-control study. Health Sci Rep 2024;7:e1911. 

13. D'Elia G, Caliendo G, Tzioni MM, Albanese L, Passariello L, Molinari AM, et al. Increased risk of hereditary prostate cancer in Italian families with hereditary breast and ovarian cancer syndrome harboring mutations in BRCA and in other susceptibility genes. Genes (Basel) 2022;13:1692. 

14. Kim M, Kim JK, Ye C, Lee H, Oh JJ, Lee S, et al. Clinical and pathologic characteristics of familial prostate cancer in Asian population. Prostate 2020;80:57-64. 

15. Brandão A, Paulo P, Teixeira MR. Hereditary predisposition to prostate cancer: From genetics to clinical implications. Int J Mol Sci 2020;21:5036. 

16. Jibara GA, Perera M, Vertosick EA, Sjoberg DD, Vickers A, Scardino PT, et al. Association of family history of cancer with clinical and pathological outcomes for prostate cancer patients on active surveillance. J Urol 2022;208:325-32. 

17. Giri VN, Beebe-Dimmer JL. Familial prostate cancer. Semin Oncol 2016;43:560-5. 

18. Teymouri A, Keshvari A, Ashjaei A, Ahmadi Tafti SM, Salahshour F, et al. Predictors of outcome in cryptoglandular anal fistula according to magnetic resonance imaging: A systematic review. Health Sci Rep 2023;6:e1354. 

19. Kohaar I, Zhang X, Chesnut G, Dalgard C, Wilkerson MD, Petrovics G. Abstract B054: Inherited mutations of DNA damage repair genes in a racially diverse cohort of men with prostate cancer. Cancer Res 2023;83:B054. 

20. Wokołorczyk D, Kluźniak W, Huzarski T, Gronwald J, Szymiczek A, Rusak B, et al; Polish hereditary prostate cancer consortium. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int J Cancer 2020;147:2793-800. 

21. Liu W, Zheng SL, Na R, Wei L, Sun J, Gallagher J, et al. Distinct genomic alterations in prostate tumors derived from African American men. Mol Cancer Res 2020;18:1815-24. 

22. Khan HM, Cheng HH. Germline genetics of prostate cancer. Prostate 2022;82:S3-12. 

23. Paulo P, Cardoso M, Brandão A, Pinto P, Falconi A, Pinheiro M, et al. Genetic landscape of homologous recombination repair genes in early-onset/familial prostate cancer patients. Genes Chromosomes Cancer 2023;62:710-20. 

24. Zhang G, Wang Z, Bavarva J, Kuhns KJ, Guo J, Ledet EM, et al. A recurrent ADPRHL1 germline mutation activates PARP1 and confers prostate cancer risk in African American families. Mol Cancer Res 2022;20:1776-84. 

25. Faisal FA, Murali S, Kaur H, Vidotto T, Guedes LB, Salles DC, et al. CDKN1B deletions are associated with metastasis in African American men with clinically localized, surgically treated prostate cancer. Clin Cancer Res 2020;26:2595-602. 

26. Chávarri-Guerra Y, Bourlon MT, Rodríguez-Olivares JL, Orozco L, Bazua D, Rodríguez-Faure A, et al. Germline DNA repair genes pathogenic variants among Mexican patients with prostate cancer. Clin Genitourin Cancer 2023;21:569-73. 

27. Casadei C, Scarpi E, Conteduca V, Gurioli G, Cursano MC, Brighi N, et al. Inherited mutations in DNA damage repair genes in italian men with metastatic prostate cancer: Results from the meet-URO 10 study. Eur Urol Open Sci 2024;61:44-51. 

28. Valsecchi AA, Dionisio R, Panepinto O, Paparo J, Palicelli A, Vignani F, et al. Frequency of germline and somatic BRCA1 and BRCA2 mutations in prostate cancer: An updated systematic review and meta-analysis. Cancers (Basel) 2023;15:2435. 

29. Maloberti T, De Leo A, Coluccelli S, Sanza V, Gruppioni E, Altimari A, et al. Multi-gene next-generation sequencing panel for analysis of BRCA1/BRCA2 and homologous recombination repair genes alterations metastatic castration-resistant prostate cancer. Int J Mol Sci 2023;24:8940. 

30. Forat-Yazdi M, Neamatzadeh H, Sheikhha MH, Zare-Shehneh M, Fattahi M. BRCA1 and BRCA2 common mutations in iranian breast cancer patients: A meta analysis. Asian Pac J Cancer Prev 2015;16:1219-24. 

31. Neamatzadeh H, Shiryazdi SM, Kalantar SM. BRCA1 and BRCA2 mutations in Iranian breast cancer patients: A systematic review. J Res Med Sci 2015;20:284-93. 

32. Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443-53. 

33. Zarchi-Karimi M, Sayad S, Vakili M, Dastgiri-Shirinzadeh A, Naseri A, Antikchi MH, et al. A collect of recommendations and guidelines for management and treatment of underlying malignancies during the COVID-19 pandemic. Acta Med Iranica 2023;61:443–448. 

34. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: The underlying mechanisms and clinical implications. Mol Cancer 2020;19:107. 

35. McNevin CS, Cadoo K, Baird AM, Murchan P, Sheils O, McDermott R, et al. Pathogenic BRCA variants as biomarkers for risk in prostate cancer. Cancers (Basel) 2021;13:5697. 

36. Salmi F, Maachi F, Tazzite A, Aboutaib R, Fekkak J, Azeddoug H, et al. Next-generation sequencing of BRCA1 and BRCA2 genes in Moroccan prostate cancer patients with positive family history. PLoS One 2021;16:e0254101. 

37. Izmailov AA, Sultanbaev AV, Menshikov KV, Nasretdinov AF, Musin SI, Ayupov RT, et al. BRCA associated prostate cancer. BRCA heredity of one family. Cancer Urol 2022;17:157-64. 

38. Feng N, Liu F, Xu X, Wang Y, Sheng Q, Zhu K. Genetic analysis of a family with multiple incidences of prostate cancer. Case Rep Oncol 2022;15:86-90. 

39. Chen W, Xia W, Xue S, Huang H, Lin Q, Liu Y, et al. Analysis of BRCA germline mutations in Chinese prostate cancer patients. Front Oncol 2022;12:746102. 

40. Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA mutations in prostate cancer: Assessment, implications and treatment considerations. Int J Mol Sci 2021;22:12628. 

41. Breast Cancer Linkage Consortium. Cancer risks in BRCA2 mutation carriers. J Natl Cancer Inst 1999;91:1310-6. 

42. Dalmasso B, Puccini A, Catalano F, Borea R, Iaia ML, Bruno W, et al. Beyond BRCA: The emerging significance of DNA damage response and personalized treatment in pancreatic and prostate cancer patients. Int J Mol Sci 2022;23:4709. 

43. Nogueira Costa I, Reis J, Meireles S, Ribeiro MJ, Barbosa M, Augusto I. Metastatic castration-resistant prostate cancer with BRCA2 mutation: The challenge incorporating PARP inhibitors and platinum in treatment sequencing. Eur J Case Rep Intern Med 2022;9:003331. 

44. Clark R, Herrera-Caceres J, Kenk M, Fleshner N. Clinical management of prostate cancer in high-risk genetic mutation carriers. Cancers (Basel) 2022;14:1004. 

45. Kensler KH, Baichoo S, Pathania S, Rebbeck TR. The tumor mutational landscape of BRCA2-deficient primary and metastatic prostate cancer. NPJ Precis Oncol 2022;6:39. 

46. Stucci LS, Internò V, Tucci M, Perrone M, Mannavola F, Palmirotta R, et al. The ATM gene in breast cancer: Its relevance in clinical practice. Genes (Basel) 2021;12:727. 

47. Huang DS, Tao HQ, He XJ, Long M, Yu S, Xia YJ, et al. Prevalence of deleterious ATM germline mutations in gastric cancer patients. Oncotarget 2015;6:40953-8. 

48. Alijanpour A, Golshan A, Vakili-Ojarood M, ShirinzadehDastgiri A, Naseri A, Karimi-Zarchi M, et al. Association of the CXCL12 rs1801157 polymorphism with breast cancer risk: A meta-analysis. Asian Pac J Cancer Prev 2024;25:767-76. 

49. Baughan SL, Darwiche F, Tainsky MA. Functional analysis of ATM variants in a high risk cohort provides insight into missing heritability. Cancer Genet 2022;264-265:40-9. 

50. Karlsson Q, Brook MN, Dadaev T, Wakerell S, Saunders EJ, Muir K, et al; PRACTICAL Consortium; Schaid DJ, Southey MC, Eeles RA, Kote-Jarai Z. Rare germline variants in ATM predispose to prostate cancer: A PRACTICAL consortium study. Eur Urol Oncol 2021;4:570-79. 

51. Freire MV, Martin M, Liège C, Segers K, Sepulchre E, Leroi N, et al. Coinheritance of pathogenic variants in ATM and BRCA2 in families with multiple cancers: a case series. Available at: https://assets-eu.researchsquare.com/files/ rs-2112256/v1/543a4b2c-5526-4505-93ce-906d68b6fe8d. pdf?c=1665302363. Accessed Aug 16, 2024. 

52. Grochot R, Carreira S, Miranda S, Figueiredo I, Bertan C, Rekowski J, et al. Germline ATM mutations detected by somatic DNA sequencing in lethal prostate cancer. Eur Urol Open Sci 2023;52:72-8. 

53. Walker SR, Abelsalam R, Ghosh S, Livingstone J, Palanisamy N, Boutros PC, et al. Decreased ATM Protein Expression Is Substantiated with PTEN Loss in defining aggressive phenotype of prostate cancer associated with lethal disease. Eur Urol Open Sci 2021;29:93–101. 

54. Kaur H, Salles DC, Murali S, Hicks JL, Nguyen M, Pritchard CC, et al. Genomic and clinicopathologic characterization of ATMdeficient prostate cancer. Clin Cancer Res 2020;26:4869-81. 

55. Gulliver C, Hoffmann R, Baillie GS. Ataxia-telangiectasia mutated and ataxia telangiectasia and Rad3-related kinases as therapeutic targets and stratification indicators for prostate cancer. Int J Biochem Cell Biol 2022;147:106230. 

56. Hwang J, Shi X, Elliott A, Arnoff TE, McGrath J, Xiu J, et al. Metastatic prostate cancers with BRCA2 versus ATM mutations exhibit divergent molecular features and clinical outcomes. Clin Cancer Res 2023;29:2702-13. 

57. Oka S, Urakami S, Hagiwara K, Hayashida M, Sakaguchi K, Miura Y, et al. The prevalence of lynch syndrome (DNA mismatch repair protein deficiency) in patients with primary localized prostate cancer using immunohistochemistry screening. Hered Cancer Clin Pract 2023;21:20. 

58. Caja F, Vodickova L, Kral J, Vymetalkova V, Naccarati A, Vodicka P. DNA mismatch repair gene variants in sporadic solid cancers. Int J Mol Sci 2020;21:5561. 

59. Bancroft EK, Raghallaigh HN, Page EC, Eeles RA. Updates in prostate cancer research and screening in men at genetically higher risk. Curr Genet Med Rep 2021;9:47-58. 

60. Fang B, Wei Y, Pan J, Zhang T, Ye D, Zhu Y. Mismatch repair gene germline mutations in patients with prostate cancer. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023;52:133-8. 

61. Ramsoekh D, Wagner A, van Leerdam ME, Dooijes D, Tops CM, Steyerberg EW, et al. Cancer risk in MLH1, MSH2 and MSH6 mutation carriers; different risk profiles may influence clinical management. Hered Cancer Clin Pract 2009;7:17. 

62. Zhu Y, Wei Y, Zeng H, Li Y, Ng CF, Zhou F, et al. Inherited mutations in Chinese men with prostate cancer. J Natl Compr Canc Netw 2021;20:54-62. 

63. Foley GR, Marthick JR, Lucas SE, Raspin K, Banks A, Stanford JL, et al. Germline sequencing of DNA damage repair genes in two hereditary prostate cancer cohorts reveals new disease risk-associated gene variants. Cancers (Basel) 2024;16:2482. 

64. Abida W, Cheng ML, Armenia J, Middha S, Autio KA, Vargas HA, et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol 2019;5:471–8. 

65. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366:141–9. 

66. Chen Y, Dufour CR, Han L, Li T, Xia H, Giguère V. Hierarchical phosphorylation of HOXB13 by mTOR dictates its activity and oncogenic function in prostate cancer. Mol Cancer Res 2023;21:1050–63. 

67. Doultsinos D, Mills IG. Derivation and application of molecular signatures to prostate cancer: Opportunities and challenges. Cancers (Basel) 2021;13:495. 

68. Kim IJ, Kang TW, Jeong T, Kim YR, Jung C. HOXB13 regulates the prostate-derived Ets factor: Implications for prostate cancer cell invasion. Int J Oncol 2014;45:869–76. 

69. Nguyen DT, Yang W, Renganathan A, Weimholt C, Angappulige DH, Nguyen T, et al. Acetylated HOXB13 regulated super enhancer genes define therapeutic vulnerabilities of castrationresistant prostate cancer. Clin Cancer Res 2022;28:4131–45. 

70. Brechka H, Bhanvadia RR, VanOpstall C, Vander Griend DJ. HOXB13 mutations and binding partners in prostate development and cancer: Function, clinical significance, and future directions. Genes Dis 2017;4:75–87. 

71. Laitinen VH, Wahlfors T, Saaristo L, Rantapero T, Pelttari LM, Kilpivaara O, et al. HOXB13 G84E mutation in Finland: Population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2013;22:452–60. 

72. Roudi R, Nemati H, Rastegar Moghadam M, Sotoudeh M, Narouie B, Shojaei A. Association of homeobox B13 (HOXB13) gene variants with prostate cancer risk in an Iranian population. Med J Islam Repub Iran 2018;32:97. 

73. Trendowski MR, Sample C, Baird T, Sadeghpour A, Moon D, Ruterbusch JJ, et al. Germline variants in DNA damage repair genes and HOXB13 among black patients with early-onset prostate cancer. JCO Precis Oncol 2022;6:e2200460. 

74. Karlsson R, Aly M, Clements M, Zheng L, Adolfsson J, Xu J, et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. Eur Urol 2014;65:169–76. 

75. Xu J, Lange EM, Lu L, Zheng SL, Wang Z, Thibodeau SN, et al. HOXB13 is a susceptibility gene for prostate cancer: Results from the International Consortium for Prostate Cancer Genetics (ICPCG). Human Genet 2013;132:5–14. 

76. Lin X, Qu L, Chen Z, Xu C, Ye D, Shao Q, et al. A novel germline mutation in HOXB13 is associated with prostate cancer risk in Chinese men. Prostate 2013;73:169–75. 

77. Kurihara S, Matsui H, Ohtake N, Aoki M, Sekine Y, Arai S, et al. Variants in HOXB13, G132E and F127C, are associated with prostate cancer risk in Japanese men. Cancer Diagn Progn 2022;2:542–8. 

78. Maia S, Cardoso M, Pinto P, Pinheiro M, Santos C, Peixoto A, et al. Identification of two novel HOXB13 germline mutations in Portuguese prostate cancer patients. PLoS One 2015;10:e0132728. 

79. D'Elia G, Caliendo G, Passariello L, Albanese L, Makker J, Molinari AM, et al. Hereditary cancer syndrome in a family with double mutation in BRIP1 and MUTYH genes. Genes (Basel) 2023;14:428. 

80. Raspin K, FitzGerald LM, Marthick JR, Field MA, Malley RC, Banks A, et al. A rare variant in EZH2 is associated with prostate cancer risk. Int J Cancer 2021;149:1089–99. 

81. Du TQ, Liu R, Zhang Q, Luo H, Liu Z, Sun S, et al. EZH2 as a prognostic factor and its immune implication with molecular characterization in prostate cancer: An integrated multi-omics in silico analysis. Biomolecules 2022;12:1617. 

82. Wang J, Park KS, Yu X, Gong W, Earp HS, Wang GG, et al. A cryptic transactivation domain of EZH2 binds AR and AR's splice variant, promoting oncogene activation and tumorous transformation. Nucleic Acids Res 2022;50:10929–46. 

83. Xin L. EZH2 accompanies prostate cancer progression. Nat Cell Biol 2021;23:934–6. 

84. Schaid DJ, McDonnell SK, FitzGerald LM, DeRycke L, Fogarty Z, Giles GG, et al. Two-stage study of familial prostate cancer by whole-exome sequencing and custom capture identifies 10 novel genes associated with the risk of prostate cancer. Eur Urol 2021;79:353–61. 

85. Qian K, Wang G, Ju L, Liu J, Luo Y, Wang Y, et al. A novel germline EGFR variant p.R831H causes predisposition to familial CDK12-mutant prostate cancer with tandem duplicator phenotype. Oncogene 2020;39:6871–8. 

86. Teixeira AL, Ribeiro R, Cardoso D, Pinto D, Lobo F, Fraga A, et al. Genetic polymorphism in EGF is associated with prostate cancer aggressiveness and progression-free interval in androgen blockade-treated patients. Clin Cancer Res 2008;14:3367–71. 

87. Fedorova L, Khrunin A, Khvorykh G, Lim J, Thornton N, Mulyar OA, et al. Analysis of common SNPs across continents reveals major genomic differences between human populations. Genes (Basel) 2022;13:1472. 

88. Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L, et al. Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores. J Clin Oncol 2017;35:2240–50. 

89. Ren N, Liu Q, Yan L, Huang Q. Parallel reporter assays identify altered regulatory role of rs684232 in leading to prostate cancer predisposition. Int J Mol Sci 2021;22:8792. 

90. Teerlink CC, Leongamornlert D, Dadaev T, Thomas A, Farnham J, Stephenson RA, et al; PRACTICAL consortium; International Consortium for Prostate Cancer Genetics; Thibodeau SN, Eeles RA, Kote-Jarai Z, Cannon-Albright L. Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Hum Genet 2016;135:923–38. 

91. Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee JJ, et al. Computational modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep 2017;7:43830. 

92. Gusev A, Shi H, Kichaev G, Pomerantz M, Li F, Long HW, et al. Atlas of prostate cancer heritability in European and AfricanAmerican men pinpoints tissue-specific regulation. Nat Commun 2016;7:10979. 

93. Cremers RG, Galesloot TE, Aben KK, van Oort IM, Vasen HF, Vermeulen SH, et al. Known susceptibility SNPs for sporadic prostate cancer show a similar association with "hereditary" prostate cancer. Prostate 2015;75:474–83. 

94. Feng J, Sun J, Kim ST, Lu Y, Wang Z, Zhang Z, et al. A genomewide survey over the ChIP-on-chip identified androgen receptor-binding genomic regions identifies a novel prostate cancer susceptibility locus at 12q13.13. Cancer Epidemiol Biomarkers Prev 2011;20:2396–403. 

95. Stegeman S, Amankwah E, Klein K, O'Mara TA, Kim D, Lin HY, et al; PRACTICAL Consortium; Australian Prostate Cancer BioResource; Spurdle AB, Clements JA, Park JY, Batra J. A large-scale analysis of genetic variants within putative mirna binding sites in prostate cancer. Cancer Discov 2015;5:368–79. 

96. Qiao JL, Levinson RT, Chen B, Engelter ST, Erhart P, Gaynor BJ, et al. A novel scatterplot-based method to detect copy number variation (CNV). Front Genet 2023;14:1166972. 

97. Pös O, Radvanszky J, Buglyó G, Pös Z, Rusnakova D, Nagy B, et al. DNA copy number variation: Main characteristics, evolutionary significance, and pathological aspects. Biomed J 2021;44:548–59. 

98. Yuan L, Sun T, Zhao J, Shen Z. Integrated analysis of CNV, Gene expression and disease state data in prostate cancer. Available at: https://www.researchsquare.com/article/rs-154159/ v1. Accesed Aug 19, 2024. 

99. Laitinen VH, Akinrinade O, Rantapero T, Tammela TL, Wahlfors T, Schleutker J. Germline copy number variation analysis in Finnish families with hereditary prostate cancer. Prostate 2016;76:316–24. 

100. Siltanen S, Wahlfors T, Schindler M, Saramäki OR, Mpindi JP, Latonen L, et al. Contribution of ARLTS1 Cys148Arg (T442C) variant with prostate cancer risk and ARLTS1 function in prostate cancer cells. PLoS One 2011;6:e26595. 

101. Khosravi M, Jahanshahi F, Tafreshian A, Kian SMH. Medical evaluation of mortality and complications of thoracoscopic surgery with the help of primary video in patients with thoracic trauma with stable hemodynamics, 2019-2020. J Med Chem Sci 2022;5:361–8. 

102. Wu Y, Chen H, Jiang G, Mo Z, Ye D, Wang M, et al. Genomewide Association Study (GWAS) of Germline Copy Number Variations (CNVs) Reveal genetic risks of prostate cancer in Chinese population. J Cancer 2018;9:923–8.  

103. Ledet EM, Hu X, Sartor O, Rayford W, Li M, Mandal D. Characterization of germline copy number variation in high-risk African American families with prostate cancer. Prostate 2013;73:614–23. 

104. Raspin K, Marthick JR, Donovan S, Blizzard L, Malley RC, Jung CH, et al. Identification of a novel recurrent EEF2 gene amplification in familial prostate tumors. Genes Chromosomes Cancer 2023;62:247–55. 

105. Williams JL, Greer PA, Squire JA. Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. Cancer Genet 2014;207:474–88 

106. Brezina S, Feigl M, Gumpenberger T, Staudinger R, Baierl A, Gsur A. Genome-wide association study of germline copy number variations reveals an association with prostate cancer aggressiveness. Mutagenesis 2020;35:283–90. 

107. Junejo NN, AlKhateeb SS. BRCA2 gene mutation and prostate cancer risk. Comprehensive review and update. Saudi Med J 2020;41:9–17. 

108. Vietri MT, D'Elia G, Caliendo G, Resse M, Casamassimi A, Passariello L, et al. Hereditary prostate cancer: Genes related, target therapy and prevention. Int J Mol Sci 2021;22:3753. 

109. Antonarakis ES, Lu C, Luber B, Liang C, Wang H, Chen Y, et al. Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol 2018;74:218–25. 

110. Wei Y, Wu J, Gu W, Wang J, Lin G, Qin X, et al. Prognostic value of germline DNA repair gene mutations in de novo metastatic and  castration-sensitive prostate cancer. Oncologist 2020;25:e1042–50. 

111. Zhu S, Jung J, Victor E, Arceo J, Gokhale S, Xie P. Clinical trials of the BTK inhibitors ibrutinib and acalabrutinib in human diseases beyond B cell malignancies. Front Oncol 2021;11:737943. 

112. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. Platinum-based chemotherapy for variant castrateresistant prostate cancer. Clin Cancer Res 2013;19:3621–30. 

113. Pomerantz MM, Spisák S, Jia L, Cronin AM, Csabai I, Ledet E, et al. The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer 2017;123:3532–9. 

114. Conteduca V, Ku SY, Puca L, Slade M, Fernandez L, Hess J, et al. SLFN11 expression in advanced prostate cancer and response to platinum-based chemotherapy. Mol Cancer Ther 2020;19:1157–64. 

115. Haghighikian M, Khaleghian M, Saberi A, Nasiri M. A survey of knowledge level about pediatric oral/dental health among pediatricians. Indian J Forensic Med Toxicol 2021;15:2686–90. 

116. Hoch D, Rabaglio M, Grob T, von Gunten M, Beyer J, Akhoundova D. Exceptional response to pembrolizumab in a mismatch repair-deficient aggressive prostate cancer with somatic EPCAM, MSH2, and MSH6 co-deletion: A case report. Case Rep Oncol 2023;16:1280–6. 

117. Marcus L, Fashoyin-Aje LA, Donoghue M, Yuan M, Rodriguez L, Gallagher PS, et al. FDA approval summary: Pembrolizumab for the treatment of tumor mutational burden-high solid tumors. Clin Cancer Res 2021;27:4685–9. 

118. Isaacsson Velho P, Antonarakis ES. PD-1/PD-L1 pathway inhibitors in advanced prostate cancer. Expert Rev Clin Pharmacol 2018;11:475–86. 

119. Graham LS, Montgomery B, Cheng HH, Yu EY, Nelson PS, Pritchard C, et al. Mismatch repair deficiency in metastatic prostate cancer: Response to PD-1 blockade and standard therapies. PLoS One 2020;15:e0233260. 

120. Hoseini M, Negahi A, Vosough F, Farazmand B, Vosough F, Farazmand B, et al. Solitary fibrous tumor in pelvis extended to transverse mesocolon and peritoneum. Res J Pharm Technol 2020;13:1941–8. 

121. Antonarakis ES, Shaukat F, Isaacsson Velho P, Kaur H, Shenderov E, Pardoll DM, et al. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur Urol 2019;75:378–82. 

122. Dilmac S, Ozpolat B. Mechanisms of PARP-inhibitor resistance in BRCA-mutated breast cancer and new therapeutic approaches. Cancers (Basel) 2023;15:3642. 

123. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, PerezLopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373:1697–708. 

124. Agarwal N, Saad F, Azad AA, Mateo J, Matsubara N, Shore ND, et al. TALAPRO-3 clinical trial protocol: Phase III study of talazoparib plus enzalutamide in metastatic castration-sensitive prostate cancer. Future Oncol 2024;20:493–505. 

125. Agarwal N, Azad A, Shore ND, Carles J, Fay AP, Dunshee C, et al. Talazoparib plus enzalutamide in metastatic castrationresistant prostate cancer: TALAPRO-2 phase III study design. Future Oncol 2022;18:425–36. 

126. Matsubara N, de Bono J, Olmos D, Procopio G, Kawakami S, Ürün Y, et al. Olaparib efficacy in patients with metastatic castration-resistant prostate cancer and BRCA1, BRCA2, or ATM alterations identified by testing circulating tumor DNA. Clin Cancer Res 2023;29:92–9. 

127. Milella M, Orsi G, Di Marco M, Salvatore L, Procaccio L, Noventa S, et al. Real-world impact of olaparib use in patients (pts) with advanced pancreatic cancer (PC) harboring germline BRCA1/2 (gBRCA) mutations. J Clin Oncol 2023;41:e16278. 

128. Karimian F, Ghaderi H, Aminian A, Haghighikian SM, Mirjafari SA. Replantation of traumatic limb amputation above the elbow: A report of 4 cases. Tehran Univ Med Sci J 2014;71:745– 51. 

129. LeVee A, Lin CY, Posadas E, Figlin R, Bhowmick NA, Di Vizio D, et al. Clinical utility of olaparib in the treatment of metastatic castration-resistant prostate cancer: A review of cur-rent evidence and patient selection. Onco Targets Ther 2021;14:4819–32. 

130. Markowski MC, Antonarakis ES. PARP inhibitors in prostate cancer: Time to narrow patient selection? Expert Rev Anticancer Ther 2020;20:523–6. 

131. Russo J, Giri VN. Germline testing and genetic counselling in prostate cancer. Nat Rev Urol 2022;19:331–43. 

132. Moses KA, Sprenkle PC, Bahler C, Box G, Carlsson SV, Catalona WJ, et al. NCCN guidelines® insights: Prostate cancer early detection, version 1.2023. J Natl Compr Canc Netw 2023;21:236–46. 

133. Kachuri L, Hoffmann TJ, Jiang Y, Berndt SI, Shelley JP, Schaffer KR, et al. Genetically adjusted PSA levels for prostate cancer screening. Nat Med 2023;29:1412–23. 

134. Narain TA, Sooriakumaran P. Beyond prostate specific antigen: New prostate cancer screening options. World J Mens 

Health 2022;40:66–73. 

135. Ruiz Vega R, Abidoye O, Adewunmi C, Ghosh AK, Caton AP, Johnson AT. Evaluating genetic screening/counseling for patients diagnosed with prostate cancer who meet hereditary risk assessment based on NCCN Guidelines. J Clin Oncol 2023;41:e17117. 

136. McHugh J, Saunders EJ, Dadaev T, McGrowder E, Bancroft E, Kote-Jarai Z, et al. Prostate cancer risk in men of differing genetic ancestry and approaches to disease screening and management in these groups. Br J Cancer 2022;126:1366–73. 

137. Behboudi B, Fazeli MS, Abkhoo A, Kazemeini A, Tafti SMA, Keramati MR, et al. Unraveling the impact of interval length between neoadjuvant chemoradiotherapy and surgery on perioperative and postoperative complications in rectal cancer patients. Eur Surg 2023;55:142–8. 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing