Multisystemic Long-Term Sequelae of Covid-19: A Review Based on the Current Literature Over a Year of Pandemic Experience
On January 7, 2020, it was announced that the Chinese Government isolated a new variant of Coronavirus (SARS CoV-2). Officials reported that populations were not equally affected in terms of the number of cases, severe illness, and death. As of 28 December 2020, 81,000,000 cases have been confirmed globally, and approximately 1,770,000 total deaths have been reported for COVID-19. Besides difficulties of COVID-19 management in the acute stage, long-term consequences of the infection could cause widespread public health problems across the World. This review article aims to examine current literature regarding COVID-19, identify post-illness sequelae, detect patients at risk for sequelae, and provide guidance to management strategies. In the report, long-term pulmonary sequels and systemic problems including cardiovascular, neurological, psychiatric, endocrinologic, nephrological, hematologic, gastrointestinal, dermatologic, etc. of COVID-19 are discussed in accordance with recent scientific publications.
1.Zhu N, Zhang D, Wang W, Li X, Yang B, Song Jet al; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727–33. [CrossRef]
2. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020;323:1775–6. [CrossRef]
3. Kumar A, Gupta PK, Srivastava A. A review of modern technologies for tackling COVID-19 pandemic. Diabetes Metab Syndr 2020;14:569–73. [CrossRef]
4. Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol 2020;58:e00512–20. [CrossRef]
5. Ihle-Hansen H, Berge T, Tveita A, Rønning EJ, Ernø PE, Andersen EL, et al. COVID-19: Symptoms, course of illness and use of clinical scoring systems for the first 42 patients admitted to a Norwegian local hospital. Tidsskr Nor Laegeforen 2020;140.
6. Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases (NCIRD) Division of Viral Diseases. Symptoms of Coronavirus. Available at: https://www.cdc.gov/coronavirus/2019-ncov/symptomstesting/symptoms.html. Accessed Dec 28, 2020.
7. Wordlometers, Coronavirus. Available at: https://www.worldometers.info/coronavirus/. Accessed Dec 28, 2020.
8. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect 2020;80:607–13. [CrossRef]
9. Li G, He X, Zhang L, Ran Q, Wang J, Xiong A, et al. Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19. J Autoimmun 2020;112:102463. [CrossRef]
10. WHO. 2019- nCoV Situation Report-1 on 21 January, 2020. Available at: https://www.who.int/emergencies/diseases/ novel-coronavirus-2019/situation-reports/. Accessed Jan 21, 2020.
11. Hui DS, Wong KT, Ko FW, Tam LS, Chan DP, Woo J, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005;128:2247–61. [CrossRef]
12. Hui DS, Joynt GM, Wong KT, Gomersall CD, Li TS, Antonio G, et al. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax 2005;60:401–9. [CrossRef]
13. Antonio GE, Wong KT, Hui DS, Wu A, Lee N, Yuen EH, et al. Thinsection CT in patients with severe acute respiratory syndrome following hospital discharge: preliminary experience. Radiology 2003;228:810–5. [CrossRef]
14. Das KM, Lee EY, Singh R, Enani MA, Al Dossari K, Van Gorkom K, et al. Follow-up chest radiographic findings in patients with MERS-CoV after recovery. Indian J Radiol Imaging 2017;27:342–9. [CrossRef]
15. Gentile F, Aimo A, Forfori F, Catapano G, Clemente A, Cademartiri F, et al. COVID-19 and risk of pulmonary fibrosis: the importance of planning ahead. Eur J Prev Cardiol 2020;27:1442–6.
16. Zhang H, Zhou P, Wei Y, Yue H, Wang Y, Hu M, et al. Histopathologic Changes and SARS-CoV-2 Immunostaining in the Lung of a Patient With COVID-19. Ann Intern Med 2020;172:629–32.
17. Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology 2020;296:E55–E64.
18. Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine 2020;25:100463. [CrossRef]
19. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020;191:145–7. [CrossRef]
20. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med 2020;173:268–77. [CrossRef]
21. Wang HJ, Ding YQ, Xu J, Li X, Li XF, Yang L, et al. Death of a SARS case from secondary aspergillus infection. Chin Med J (Engl) 2004;117:1278–80.
22. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 2005;18:1–10. [CrossRef]
23. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;17:543–58. [CrossRef]
24. Faconti L, Chowienczky PJ and Shah AM. Cardiovacular disease, heart failure and COVID-19. J Renin Angiotensin AldosteroneSyst 2020;21:1470320320926903. [CrossRef]
25. Rivera-Morales MD, Pell R, Rubero J, Ganti L. Acute Myopericarditis in the Post COVID-19 Recovery Phase. Cureus 2020;12(:e11247. [CrossRef]
26. Konar N, Saha P, Moseley A, Denman J, Hatahintwali F, Ali R, et al. Cardiovascular Manifestations in COVID-19: Analysis of a Case Series of Hospital Admissions with Laboratory Confirmed SARS-CoV-2 PCR tests. The Physician 2020;6:1–7. [CrossRef]
27. Puntmann VO, Carerj ML, Wieters I, Fahim M, Arendt C, Hoffmann J, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020;5:1265–73.
28. Rajpal S, Tong MS, Borchers J, Zareba KM, Obarski TP, Simonetti OP, et al. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol 2021;6:116–8. [CrossRef]
29. Yang C, Jin Z. An Acute Respiratory Infection Runs Into the Most Common Noncommunicable Epidemic-COVID-19 and Cardiovascular Diseases. JAMA Cardiol 2020;5:743–4. [CrossRef]
30. Mehta JL, Calcaterra G, Bassareo PP. COVID-19, thromboembolic risk, and Virchow's triad: Lesson from the past. Clin Cardiol 2020;43:1362–7. [CrossRef]
31. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395:1417–8. [CrossRef]
32. Korupolu R, Francisco GE, Levin H, Needham DM. Rehabilitation of critically Ill COVID-19 survivors. J Int Soc Phys Rehabil Med 2020;3:45–52. [CrossRef]
33. Gutenbrunner C, Stokes EK, Dreinhofer K, Monsbakken J, Clarke S, Côté P, et al. Why Rehabilitation must have priority during and after the COVID-19-pandemic: A position statement of the Global Rehabilitation Alliance. J Rehabil Med 2020;52:jrm00081. [CrossRef]
34. Hsieh MJ, Lee WC, Cho HY, Wu MF, Hu HC, Kao KC, et al. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis. Influenza Other Respir Viruses 2018;12:643–8. [CrossRef]
35. Kiekens C, Boldrini P, Andreoli A, Avesani R, Gamna F, Grandi M, et al. Rehabilitation and respiratory management in the acute and early post-acute phase. "Instant paper from the field" on rehabilitation answers to the COVID-19 emergency. Eur J Phys Rehabil Med 2020;56:323–6. [CrossRef]
36. Simpson R, Robinson L. Rehabilitation After Critical Illness in People With COVID-19 Infection. Am J Phys Med Rehabil 2020;99:470–4. [CrossRef]
37. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 2020;77:683–90.
38. Steardo L, Steardo L Jr, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf) 2020;229:13473. [CrossRef]
39. Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early Clinical and CT Manifestations of Coronavirus Disease 2019 (COVID-19) Pneumonia. AJR Am J Roentgenol 2020:338–43. [CrossRef]
40. Jajodia A, Ebner L, Heidinger B, Chaturvedi A, Prosch H. Imaging in corona virus disease 2019 (COVID-19)-A Scoping review. Eur J Radiol Open. 2020;7:100237. [CrossRef]
41. Liu D, Zhang W, Pan F, Li L, Yang L, Zheng D, et al. The pulmonary sequalae in discharged patients with COVID-19: a shortterm observational study. Respir Res 2020;21:125. [CrossRef]
42. Wu X, Dong D, Ma D. Thin-section computed tomography manifestations during convalescence and long-term followup of patients with severe acute respiratory syndrome (SARS). Med Sci Monit 2016;22:2793–9. [CrossRef]
43. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506. [CrossRef]
44. Öztürk Ş. COVID-19 and Neurology. Turk J Neurol 2020;26:109– 11. [CrossRef]
45. Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer's research & therapy 2020;12:69. [CrossRef]
46. Yu H, Sun T, Feng J. Complications and Pathophysiology of COVID-19 in the Nervous System Front Neurol 2020;11:573421.
47. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 2020;71:889–90. [CrossRef]
48. Helms J, Kremer S, Merdji H. Neurologic Features in Severe SARS-CoV-2 Infection 2020;382:2268–70. [CrossRef]
49. Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J 2019;38:e101064.
50. Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis 2020;76:3–19. [CrossRef]
51. Wijeratne T, Crewther S. Post-COVID 19 Neurological Syndrome (PCNS); a novel syndrome with challenges for the global neurology community. Journal of the neurological sciences 2020;419:117179. [CrossRef]
52. Berger JR. COVID-19 and the nervous system. Journal of neurovirology 2020;26:143–8. [CrossRef]
53. Taylor S, Landry CA, Paluszek MM, Fergus TA, McKay D, Asmundson GJ. COVID stress syndrome: Concept, structure, and correlates. Depress Anxiety 2020;37:706–14. [CrossRef]
54. Knowles KA, Olatunji BO. Anxiety and safety behavior usage during the COVID-19 pandemic: The prospective role of contamination fear. J Anxiety Disord 2020;77:102323. [CrossRef]
55. Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. Brain Behav Immun 2020;89:531–42. [CrossRef]
56. Wang C, Pan R, Wan X, Tan y, Xu L, Mclntyre RS, et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun 2020;87:40–8. [CrossRef]
57. Pandey D, Bansal S, Goyal S, Garg A, Sethi N, Pothiyill DI, et al. Psychological impact of mass quarantine on population during pandemics-The COVID-19 Lock-Down (COLD) study. PLoS One 2020;15:e0240501. [CrossRef]
58. Lawson M, Piel MH, Simon M. Child Maltreatment during the COVID-19 Pandemic: Consequences of Parental Job Loss on Psychological and Physical Abuse Towards Children. Child Abuse Negl 2020;110:104709. [CrossRef]
59. Tang F, Liang J, Zhang H, Kelifa MM, He Q, Wang P. COVID-19 related depression and anxiety among quarantined respondents. Psychol Health 2020:36.164–78. [CrossRef]
60. Taquet M, Luciano S, Geddes JR, Harriosn PJ. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet 2021;8:130–40. [CrossRef]
61. Tomasoni D, Bai F, Castoldi R, Barbanotti D, Falcinella C, Mulè G, et al. Anxiety and depression symptoms after virological clearance of COVID-19: A cross-sectional study in Milan, Italy. J Med Virol 2021;93:1175–9. [CrossRef]
62. Mazza MG, De Lorenzo R, Conte C, Poletti S, Vai B, Bollettini I, et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020;89:594–600. [CrossRef]
63. Chang MC, Park D. Incidence of Post-Traumatic Stress Disorder After Coronavirus Disease. Healthcare (Basel) 2020;8:373.
64. Horn M, Wathelet M, Fovet T, Amad A, Vuotto F, Faure K, et al. Is COVID-19 Associated With Posttraumatic Stress Disorder? The Journal of clinical psychiatry 2020;82:20m13641. [CrossRef]
65. Poyraz BC, Poyraz CA, Olgun Y, Gurel O, Alkan S, Ozdemir YE, et al. Psychiatric morbidity and protracted symptoms after COVID-19. Psychiatry Res 2020;295:113604. [CrossRef]
66. Li LZ, Wang S. Prevalence and predictors of general psychiatric disorders and loneliness during COVID-19 in the United Kingdom. Psychiatry Res 2020;291:113267. [CrossRef]
67. Killgore WD, Cloonen SA, Taylor EC, Dailey NS. Loneliness: A signature mental health concern in the era of COVID-19. Psychiatry Research 2020;290:113117. [CrossRef]
68. Hampshire A, Trender W, Chamberlain S, Grant AJJE, Patrick F, Mazibuko N, et al. Cognitive Cognitive deficits in people who have recovered from COVID-19 relative to controls: An N= 84,285 online study. medRxiv. 2020 Oct 21. Doi: https://doi.org/ 10.1101/2020.10.20.20215863. [Epub ahead of print]. [CrossRef]
69. Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire PP, FusarPoli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry 2020;7:611–27. [CrossRef]
70. Jaworowski S, Weiser M, Gropp C, Malka M. Three Cases of COVID-19-related First Onset Brief Reactive Psychosis. Isr Med Assoc J 2020;22:612.
71. Huarcaya-Victoria J, Meneses-Saco A, Luna-Cuadros MA. Psychotic symptoms in COVID-19 infection: A case series from Lima, Peru. Psychiatry Res 2020;293:113378. [CrossRef]
72. Caan MP, Lim CT, Howard M. A Case of Catatonia in a Man With COVID-19. Psychosomatics 2020;61:556–60. [CrossRef]
73. Zou R, Wu C, Zhang S, Wang G, Zhang Q, Yu B, et al. Euthyroid Sick Syndrome in Patients With COVID-19. Front Endocrinol (Lausanne) 2020;11:566439. [CrossRef]
74. Asfuroglu Kalkan E, Ates I. A case of subacute thyroiditis associated with COVID-19 infection. J Endocrinol Invest 2020;43:1173–4. [CrossRef]
75. Mattar SAM, Koh SJQ, Rama Chandran S, Cherng BPZ. Subacute thyroiditis associated with COVID-19. BMJ Case Rep 2020;13:3–6. [CrossRef]
76. Campos-Barrera E, Alvarez-Cisneros T, Davalos-Fuentes M. Subacute Thyroiditis Associated with COVID-19. Case Rep Endocrinol 2020;2020:7–10. [CrossRef]
77. Pastor S, Molina Á, De Celis E. Thyrotoxic Crisis and COVID-19 Infection: An Extraordinary Case and Literature Review. Cureus 2020;12:1–8. [CrossRef]
78. Mateu-Salat M, Urgell E, Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves' disease after COVID-19. J Endocrinol Invest 2020;43:1527–8. [CrossRef]
79. Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngnitejeu ST, et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J Endocrinol Invest 2020:1–6. [CrossRef]
80. Mizuno S, Inaba H, Kobayashi KI, Kubo K, Ito S, Hirobata T, et al. A case of postpartum thyroiditis following SARS-CoV-2 infection. Endocr J. 2020 Nov 12. doi: 10.1507/endocrj.EJ20–0553. [Epub ahead of print]. [CrossRef]
81. Kumar A, Arora A, Sharma P, Anikhindi SA, Bansal N, Singla V, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr 2020;14:535–45. [CrossRef]
82. Palermo NE, Sadhu AR, McDonnell ME. Diabetic Ketoacidosis in COVID-19: Unique Concerns and Considerations. J Clin Endocrinol Metab 2020;105: dgaa360. [CrossRef]
83. Chan KH, Thimmareddygari D, Ramahi A, Atallah L, Baranetsky NG, Slim J. Clinical characteristics and outcome in patients with combined diabetic ketoacidosis and hyperosmolar hyperglycemic state associated with COVID-19: A retrospective, hospital-based observational case series. Diabetes Res Clin Pract 2020;166:108279. [CrossRef]
84. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, et al. New-Onset Diabetes in Covid-19. N Engl J Med 2020;383:789–90. [CrossRef]
85. Hollstein T, Schulte DM, Schulz J, Glück A, Ziegler AG, Bonifacio E, et al. Autoantibody-negative insulin-dependent diabetes mellitus after SARS-CoV-2 infection: a case report. Nat Metab 2020;2:1021–4. [CrossRef]
86. Santana MF, Borba MGS, Baía-Da-Silva DC, Val F, Alexandre MAA, Brito-Sousa JD, et al. Case report: Adrenal pathology findings in severe COVID-19: An autopsy study. Am J Trop Med Hyg 2020;103:1604–7. [CrossRef]
87. Porras MG. Primary adrenal insufficiency secondary to COVID-19 infection: A case report. Endocr Abstr. Sep 5 2020. Doi: 101530/endoabs70AEP1015. [Epub Ahead of print].
88. Frankel M, Feldman I, Levine M, Frank Y, Bogot NR, Benjaminov O, et al. Bilateral Adrenal Hemorrhage in Coronavirus Disease 2019 Patient: A Case Report. J Clin Endocrinol Metab 2020;105:dgaa487. [CrossRef]
89. Álvarez-Troncoso J, Larrauri MZ, Vega MDM, Vallano RG, Peláez EP, Rojas-Marcos PM, et al. Case Report: COVID-19 with Bilateral Adrenal Hemorrhage. Am J Trop Med Hyg 2020;103:1156–7.
90. Sharrack N, Baxter CT, Paddock M, Uchegbu E. Adrenal haemorrhage as a complication of COVID-19 infection. BMJ Case Rep 2020;13:e239643. [CrossRef]
91. Kumar R, Guruparan T, Siddiqi S, Sheth R, Jacyna M, Naghibi M, et al. A case of adrenal infarction in a patient with COVID 19 infection. BJR|case reports 2020;6:20200075. [CrossRef]
92. Rajevac H, Bachan M, Khan Z. Diabetes Insipidus As A Symptom Of Covid-19 Infection: Case Report Chest 2020;158:A2576.
93. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–20. [CrossRef]
94. Unuvar A. COVID-19 and Coagulopathy. Sağlık Bilimlerinde İleri Araştırmalar Dergisi 2020;3:S53–S62.
95. Wang T, Chen R, Liu C, Liang W, Guan W, Tang R, et al. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol 2020;7:362–3.
96. Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, Parra-Virto A, Toledano-Macías M, Toledo-Samaniego N, et al. Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thromb Res 2020;192:23–6. [CrossRef]
97. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–7.
98. Günertem E, Akay T, Aliyev A, Beyazpınar S, Erdil N, Erer D, et al. Treatment and prophylaxis strategies for deep vein thrombosis during COVID-19 outbreak. Turk J Vasc Surg 2020;29:203–7.
99. Mei H, Hu Y. Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19. [Article in Chinese]. Zhonghua Xue Ye Xue Za Zhi 2020;41:185–91.
100. Gao QY, Chen YX, Fang JY. 2019 Novel coronavirus infection and gastrointestinal tract. J Dig Dis 2020;21:125–6. [CrossRef]
101. Yang RX, Zheng RD, Fan JG. Etiology and management of liver injury in patients with COVID-19. World J Gastroenterol 2020;26:4753–62. [CrossRef]
102. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9. [CrossRef]
103. Huang JF, Zheng KI, George J, Gao HN, Wei RN, Yan HD, et al. Fatal outcome in a liver transplant recipient with COVID-19. Am J Transplant 2020;20:1907–10. [CrossRef]
104. Fishman JA, Grossi PA. Novel coronavirus-19 (COVID-19) in the immunocompromised transplant recipient: #flatteningthecurve. Am J Transplant 2020;20:1765–7. [CrossRef]
105. Cha MH, Regueiro M, Sandhu DS. Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review. World J Gastroenterol 2020;26:2323–32. [CrossRef]
106. Mao R, Qiu Y, He JS, Tan JY, Li XH, Liang J, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5:667–78. [CrossRef]
107. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–13. [CrossRef]
108. Joob B, Wiwanitkit V. Novel Middle East respiratory syndrome and renal failure. Ren Fail 2014;36:147. [CrossRef]
109. Li Z, Wu M, Guo J, Liao X, Song S, Li J, et al. Caution on Kidney Dysfunctions of COVID-19 Patients. SSRN. 2020 Apr 1. Doi: https://doi.org/10.2139/ssrn.3559601. [Epub ahead of print].
110. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with inhospital death of patients with COVID-19. Kidney Int 2020;97:829–38. [CrossRef]
111. Ahmed AR, Ebad CA, Stoneman S, Satti MM, Conlon PJ. Kidney injury in COVID19. World J Nephrol 2020;9:18–32. [CrossRef]
112. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 2020;16:308–10. [CrossRef]
113. Diao B, Wang C, Wang R, Feng Z, Tan Y, Wang H, et al. Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. medRxiv. 2020 Apr 10. Doi: https://doi.org/10.1101/2020.03.04.2003 1120. [Epub ahead of print]. [CrossRef]
114. Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med 2020;52:345–53. [CrossRef]
115. Wang W, Gao R, Zheng Y, Jiang L. COVID-19 with spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema. J Travel Med 2020;27:taaa062. [CrossRef]
116. Sun R, Liu H, Wang X. Mediastinal Emphysema, Giant Bulla, and Pneumothorax Developed during the Course of COVID-19 Pneumonia. Korean J Radiol 2020;21:541–4. [CrossRef]
117. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR Am J Roentgenol 2020;215:87–93. [CrossRef]
118. Sahn SA, Heffner JE. Spontaneous pneumothorax. N Engl J Med 2000;342:868–74. [CrossRef] 119. McGuinness G, Zhan C, Rosenberg N, Azour L, Wickstrom M, Mason DM, et al. Increased Incidence of Barotrauma in Patients with COVID-19 on Invasive Mechanical Ventilation. Radiology 2020;297:252–62. [CrossRef]
120. López Vega JM, Parra Gordo ML, Diez Tascón A, Ossaba Vélez S. Pneumomediastinum and spontaneous pneumothorax as an extrapulmonary complication of COVID-19 disease. Emerg Radiol 2020;27:727–30. [CrossRef]
121. Sihoe AD, Wong RH, Lee AT, Lau LS, Leung NY, Law KI, et al. Severe acute respiratory syndrome complicated by spontaneous pneumothorax. Chest 2004;125:2345–51. [CrossRef]
122. Das KM, Lee EY, Al Jawder SE, Enani MA, Singh R, Skakni R, et al. Acute Middle East Respiratory Syndrome Coronavirus: Temporal Lung Changes Observed on the Chest Radiographs of 55 Patients. American Journal of Roentgenology 2015;205:267–74. [CrossRef]
123. Pieracci FM, Burlew CC, Spain D, Livingston DH, Bulger EM, Davis KA, et al. Tube thoracostomy during the COVID-19 pandemic: guidance and recommendations from the AAST Acute Care Surgery and Critical Care Committees. Trauma Surg Acute Care Open 2020;5:e000498. [CrossRef]
124. Schaller T, Hirschbuhl K, Burkhardt K, Braun G, Trepel M, Markl B, et al. Postmortem examination of patients with COVID-19. JAMA 2020;323:2518–20. [CrossRef]
125. Akhtar MR, Ricketts W, Fotheringham T. Use of an antiviral filter attached to a pleural drain bottle to prevent aerosol contamination with SARS-CoV-2. Clin Med 2020;20:60–1. [CrossRef]
126. Hallifax R, Wrightson JM, Bibby A, Walker S, Stanton A, Fonseka DD et al. Pleural Services During the COVID-19 Pandemic – Revised. Available at: https://www.brit-thoracic. org.uk/document-library/quality-improvement/covid-19/ pleural-services-during-covid-19-pandemic/. Accessed May 21, 2020.
127. Seah I, Agrawal R. Can the Coronavirus Disease 2019 (CO-VID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul Immunol Inflamm 2020;28:391–5. [CrossRef]
128. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol 2020;94:e00127–20. [CrossRef]
129. Cheema M, Aghazadeh H, Nazarali S, Ting A, Hodges J, McFarlane A, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol 2020;55:125–9. [CrossRef]
130. Zhang X, Chen X, Chen L, Deng C, Zou X, Liu W, et al. The evidence of SARS-CoV-2 infection on ocular surface. Ocul Surf 2020;18:360–2. [CrossRef]
131. Wu P, Duan F, Luo C, Liu Q, Qu X, Liang L, et al. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol 2020;138:575–8. [CrossRef]
132. Chen L, Liu M, Zhang Z, Qiao K, Huang T, Chen M, et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. Br J Ophthalmol 2020;104:748–51. [CrossRef]
133. Ocansey S, Abu EK, Abraham CH, Owusu-Ansah A, BoadiKusi SB, Ilechie AA, Acheampong DO. Ocular Symptoms of SARS-CoV-2: Indication of Possible Ocular Transmission or Viral Shedding. Ocul Immunol Inflamm 2020;28:1269–79.
134. Chin MS, Hooper LC, Hooks J, Detrick B. Identification of α-fodrin as an autoantigen in experimental coronavirus retinopathy (ECOR). Journal of Neuroimmunology 2014;272:42–50. [CrossRef]
135. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort R Jr. Retinal findings in patients with COVID-19. Lancet 2020;395:1610. [CrossRef]
136. Vavvas DG, Sarraf D, Sadda SR, Eliott D, Ehlers JP, Waheed NK, et al. Concerns about the interpretation of OCT and fundus findings in COVID-19 patients in recent Lancet publication. Eye (Lond) 2020;34:2153–4. [CrossRef]
137. Savastano A, Cricoli E, Savastano MC, Younis S, Gambini G, De Vico U, et al. Peripapillary retinal vascular involvement in early post-COVID-19 patients. Journal of Clinical Medicine 2020;9:2895. [CrossRef]
138. Abrishami M, Emamverdian Z, Shoeibi N, Omidtabrizi A, Daneshvar R, Saeidi Rezvani T, et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: a case-control study. Can J Ophthalmol 2021;56:24–30. [CrossRef]
139. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 2020;395:1771–8. [CrossRef]
140. Krogh-Madsen R, Thyfault JP, Broholm C, Mortensen OH, Olsen RH, Mounier R, et al. A 2-wk reduction of ambulatory activity attenuates peripheral insulin sensitivity. J Appl Physiol 2010;108:1034–40. [CrossRef]
141. Saritas TB, Bozkurt B, Simsek B, Cakmak Z, Ozdemir M, Yosunkaya A. Ocular surface disorders in intensive care unit patients. Scientific World Journal 2013;2013:182038. [CrossRef]
142. Bertoli F, Veritti D, Danese, Samassa F, Sarao V, Rassu N, et al. Ocular Findings in COVID-19 Patients: A Review of Direct Manifestations and Indirect Effects on the Eye. Journal of Ophthalmology 2020;2020:4827304. [CrossRef]
143. American Academy of Otolaryngology–Head and Neck Surgery. Anosmia, Hyposmia, and Dysgeusia Symptoms of Coronavirus Disease. Available at: https://www.entnet.org/ content/aao-hns-anosmia-hyposmia-and-dysgeusia-symptoms-coronavirus-disease. Accessed Jun 1, 2020.
144. Sociedad Española de Neurología. Recomendaciones de la Sociedad Española de Neurología (SEN) enrelación con la pérdida de olfato como posible síntoma precoz de infección por COVID-19. Available at: https://www.sen.es/ noticias-y-actividades/222-noticias/covid-19-informacionpara-pacientes/2663-covid-recomendaciones-de-la-sociedad-espanola-de-neurologia-sen-en-relacion-con-la-perdida-de-olfato-como-posible-sintoma-precoz-de-infeccionpor-covid-19. Accessed Jun 1, 2020.
145. ENTUK. Loss of Sense of Smell as Marker of COVID-19 Infection. Available at: https://www.entuk.org/sites/default/ files/files/Loss%20of%20sense%20of%20smell%20as%20 marker%20of%20COVID.pdf. Accessed Mar 21, 2020.
146. Vroegop AV, Eeckels AS, Van Rompaey V, Abeele DV, Schiapolli M, Alobid I, et al. COVID-19 and olfactory dysfunction—an ENT perspective to the current COVID-19 pandemic. B-ENT 2020;16:81–5. [CrossRef]
147. Nunan D. Loss of smell and taste as symptoms of COVID-19: what does the evidence say?, The Centre for Evidence-Based Medicine. Available at: https://www.cebm.net/covid-19/ loss-of-smell-and-taste-as-symptoms-of-covid-19-whatdoes-the-evidence-say/. Accessed 02 June 2020.
148. Hwang CS. Olfactory neuropathy in severe acute respiratory syndrome: report of A case. Acta neurologica Taiwanica 2006;15:26–8.
149. Mullol J, Alobid I, Mariño-Sánchez F, Izquierdo-Domínguez A, Marin C, Klimek L, et al. The Loss of Smell and Taste in the COVID-19 Outbreak: a Tale of Many Countries. Curr Allergy Asthma Rep 2020;20:61. [CrossRef]
150. Dell’Era V, Farri F, Garzaro G, Gatto M, Aluffi Valletti P, Garzaro M. Smell and taste disorders during COVID‐19 outbreak: Cross‐sectional study on 355 patients. Head & Neck 2020;42:1591–6. [CrossRef]
151. Whitcroft KL, Hummel T. Olfactory Dysfunction in COVID-19: Diagnosis and Management. JAMA 2020;323:2512–4. [CrossRef]
152. Cohen BE, Durstenfeld A, Roehm PC. Viral causes of hearingloss: a review for hearing health professionals. Trends Hear 2014;18:2331216514541361. [CrossRef]
153. Sriwijitalai W, Wiwanitkit V. Hearing loss and COVID-19: A note. Am J Otolaryngol 2020;41:102473. [CrossRef]
154. Rhman SA, Wahid AA. COVID-19 and sudden sensorineural hearing loss: a case report. Otolaryngol Case Reports 2020;16:100198. [CrossRef]
155. Kilic O, Kalcioglu MT, Cag Y, Tuysuz O, Pektas E, Caskurlu H, et al. Could sudden sensorineural hearing loss be the sole manifestation of COVID-19? An investigation into SARSCOV-2 in the etiology of sudden sensorineural hearing loss. Int J Infect Dis 2020;97:208–11. [CrossRef]
156. Mustafa MWM. Audiological profile of asymptomatic COVID-19 PCR-positive cases. Am J Otolaryngol 2020;41:102483.
157. Degen C, Lenarz T, Willenborg K. Acute profound sensorineural hearing loss after COVID-19 pneumonia. Mayo Clin Proc 2020;95:1801–3. [CrossRef]
158. Koumpa FS, Forde CT, Manjaly JG. Sudden irreversible hearing loss post COVID-19. BMJ Case Rep 2020;13:e238419.
159. Cui C, Yao Q, Zhang D, Zhao Y, Zhang K, Nisenbaum E, et al. Approaching Otolaryngology Patients During the COVID-19 Pandemic. Otolaryngol Head Neck Surg 2020;163:121–31.
160. García-Romo E, Blanco R, Nicholls C, Hernández-Tejero A, Fernández-de-Arévalo B. COVID-19 presenting with nystagmus. Arch Soc Esp Oftalmol. 2020 Nov 6. doi: 10.1016/j. oftal.2020.09.008. [Epub ahead of print]. [CrossRef]
161. Chirakkal P, Hail ANA, Zada N, Vijayakumar DS. COVID-19 and Tinnitus. Ear Nose Throat J. 2020 Dec 4:145561320974849. doi: 10.1177/0145561320974849. [Epub ahead of print].
162. Brody RM, Albergotti WG, Shimunov D, Nicolli E, Patel UA, Harris BN, et al. Changes in head and neck oncologic practice during the COVID-19 pandemic. Head Neck 2020;42:1448–53. [CrossRef]
163. Dejucq N, Jégou B. Viruses in the mammalian male genital tract and their effects on the reproductive system. Microbiol Mol Biol Rev 2001;65:208–31; first and second pages, table of contents. [CrossRef]
164. Liu W, Han R, Wu H, Han D. Viral threat to male fertility. Andrologia 2018;50:e13140. [CrossRef]
165. Salam AP, Horby PW. The Breadth of Viruses in Human Semen. Emerging infectious diseases 2017;23:1922–4. [CrossRef]
166. Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, et al. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian journal of andrology 2014;16:572–80. [CrossRef]
167. Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020;9:920. [CrossRef]
168. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, et al. Orchitis: a complication of severe acute respiratory syndrome (SARS). Biology of reproduction 2006;74:410–6. [CrossRef]
169. Xu J, Xu Z, Jiang Y, Qian X, Huang Y. Cryptorchidism induces mouse testicular germ cell apoptosis and changes in bcl-2 and bax protein expression. Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer 2000;19:25–33.
170. Corona G, Baldi E, Isidori AM, Paoli D, Pallotti F, De Santis L, et al. SARS-CoV-2 infection, male fertility and sperm cryopreservation: a position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS) (Società Italiana di Andrologia e Medicina della Sessualità). Journal of endocrinological investigation 2020;43:1153–7. [CrossRef]
171. Li D, Jin M, Bao P, Zhao W, Zhang S. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA network open 2020;3:e208292. [CrossRef]
172. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, et al. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Fertility and sterility 2020;113:1135–9. [CrossRef]
173. Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertility and sterility. 2020;114:233–8.
174. Chen F, Lou D. Rising Concern on Damaged Testis of COVID-19 Patients. Urology 2020;142:42. [CrossRef]
175. Yang M, Chen S, Huang B, Zhong JM, Su H, Chen YJ, et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. European urology focus 2020;6:1124–9.
176. Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R. Unraveling the mystery of COVID-19 cytokine storm: From skin to organ systems. Dermatol Ther. 2020 Jun 19:e13859. doi: 10.1111/dth.13859. [Epub ahead of print]. [CrossRef]
177. Bandhala Rajan M, Kumar-M P, Bhardwaj A. The trend of cutaneous lesions during COVID-19 pandemic: lessons from a meta-analysis and systematic review. Int J Dermatol. 2020 Sep 16. doi: 10.1111/ijd.15154. Epub ahead of print. [CrossRef]
178. Daneshgaran G, Dubin DP, Gould DJ. Cutaneous Manifestations of COVID-19: An Evidence-Based Review. Am J Clin Dermatol 2020;21:627–39. [CrossRef]
179. Sachdeva M, Mufti A, Maliyar K, Lytvyn Y, Yeung J. Hydroxychloroquine effects on psoriasis: A systematic review and a cautionary note for COVID-19 treatment. J Am Acad Dermatol 2020;83:579–86. [CrossRef]
180. Nasiri S, Araghi F, Tabary M, Gheisari M, Mahboubi-Fooladi Z, Dadkhahfar S. A challenging case of psoriasis flare-up after COVID-19 infection. J Dermatolog Treat 2020;31:448–9.
181. Wollina U. Challenges of COVID-19 pandemic for dermatology. Dermatol Ther 2020;33:e13430. [CrossRef]
182. Zhang Y, Geng X, Tan Y, Li Q, Xu C, Xu J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine & Pharmacotherapy 2020;127:110195. [CrossRef]
183. Reis FM, Bouissou DR, Pereira VM, Camargos AF, dos Reis AM, Santos RA. Angiotensin-(1-7), its receptor Mas, and the angiotensin-converting enzyme type 2 are expressed in the human ovary. Fertil Steril 2011;95:176–81. [CrossRef]
184. Sugino N, Suzuki T, Sakata A, Miwa I, Asada H, Taketani T, et al. Angiogenesis in the human corpus luteum: changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab 2005;90:6141–8. [CrossRef]
185. Mauvais-Jarvis F, Klein SL, Levin ER. Estradiol, Progesteron, İmmünomodülasyon ve COVID-19 Sonuçları. Endokrinoloji 2020;161:bqaa127. [CrossRef]
186. Wu YT, Liu C, Dong L, Zhang CJ, Chen Y, Liu J, et al. Viral Shedding of COVID-19 in Pregnant Women. SSRN. 2020 Mar 25. Doi: http://dx.doi.org/10.2139/ssrn.3562059. [Epub ahead of print]. [CrossRef]
187. Merrill DC, Karoly M, Chen K, Ferrario CM, Brosnihan KB. Angiotensin-(1-7) in normal and preeclamptic pregnancy. Endocrine 2002;18:239–45. [CrossRef]
188. Crimi E, Benincasa G, Figueroa-Marrero N, Galdiero M, Napoli C. Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. British Journal of Anaesthesia 2020;125:1002e1017.
189. Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19. Ann Lab Med 2021;41:129–38.
190. Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020;12:156. [CrossRef]
191. Freitas NL, Azevedo PRG, BrandÃo F. A glance upon Epigenetic and COVID-19. An Acad Bras Cienc 2020;92;e20201451.
192. Chlamydas S, Papavassiliou AG, Pıperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics 2020;1–8.
193. Thierry AR. Host/genetic factors associated with COVID-19 call for precision medicine . Precision Clinical Medicine 2020;3:228–34. [CrossRef]
194. Pollitt KJG, Peccia J, Ko AI, Albert IK, Kaminski N, Cruz CSD, et al. COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Hum Genomics 2020;14:17. [CrossRef]
195. Hamam JH, Palaniyar N. Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules 2019;9:369. [CrossRef]
196. Kaplan MJ, Radic M. Neutrophil extracellular traps (NETs): Double-edged swords of innate immunity. J Immunol 2012;189:2689–95. [CrossRef]
197. Halpin SJ, McIvor C, Whyatt G, Adams A, Harvey O, McLean L, et al. Postdischarge symptoms and rehabilitation needs in survivors of COVID-19 infection: A cross-sectional evaluation. J Med Virol 2020;93:1013–22. [CrossRef]
198. (Jiang DH, McCoy RG. Planning for the Post-COVID Syndrome: How Payers Can Mitigate Long-Term Complications of the Pandemic. J Gen Intern Med 2020;35(10):3036–9. [CrossRef]
199. Ahmad T, Haroon, Baig M, Hui J. Coronavirus Disease 2019 (COVID-19) Pandemic and Economic Impact. Pak J Med Sci 2020;36:73–8. [CrossRef]