AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2388
RESEARCH ARTICLE

A metamaterial bone plate for biofixation based on 3D printing technology

Guoqing Zhang1* Junxin Li1 Congcong Shangguan2 Xiaoyu Zhou1 Yongsheng Zhou1 Aibing Huang3
Show Less
1 Department of Mechanical Design and Manufacturing, School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, China
2 Veterinary Laboratory, Shangzhou District Animal Health Supervision Institute, Shangluo, Shaanxi, China
3 Department of Orthopedics, Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu, China
IJB 2024, 10(4), 2388 https://doi.org/10.36922/ijb.2388
Submitted: 8 December 2023 | Accepted: 6 March 2024 | Published: 30 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bone plate design and production methods are critical for producing metamaterial bone plates. This study investigated the design and development process of porous structures and metamaterial bone plates for biofixation applications. We designed the porous structures for bone plates using parametric modeling and fused them via the implicit surface fusion method. Likewise, we designed the metamaterial bone plate structure using reverse reconstruction and topological optimization. Thereafter, we utilized three-dimensional (3D) printing for producing and post-processing the metamaterial bone plate. We observed a reduced stress-shielding effect after topological optimization. Additionally, the resultant diamond porous structure maintained a high porosity under pressure. The 3D-printed bone plates and fillers had a bright porous surface, with clear pore structures and good connectivity. The assembly of the 3D-printed femur, bone plate, filler, and standardized screw indicated a good fitting, and the filler could be fixed by the inclined surface. Taken together, the findings of this study established the foundation for the prospective application of metamaterial bone plates in biofixation.

Keywords
3D printing
Bone plate
Topological optimization
Porous structure
Forming quality
Funding
The study was funded by the Henan Provincial Science and Technology Project (242102311240) and the Open Project of Guangxi Key Laboratory of Regenerative Medicine (Guizai reopened 202202).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Chen B, He Q, Yang J, et al. The significance of Piezo1 protein in the pathogenesis of femoral head necrosis. China Tissue Eng Res. 2023;27(27):4414-4420. doi: 10.12307/2023.603
  2. Soucacos PN, Kokkalis ZT, Piagkou M, Johnson EO. Vascularized bone grafts for the management of skeletal defects in orthopaedic trauma and reconstructive surgery. Injury, 2013;44: S70-S75. doi: 10.1016/S0020-1383(13)70016
  3. Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg. 2010;63(10):1615-1623. doi: 10.1016/j.bjps.2009.06.003
  4. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1):306. doi: 10.18063/ijb.v7i1.306
  5. Li S, Huan Y, Zhu B, Chen H, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med. 2022;33(1):1-13. doi: 10.1007/s10856-021-016609-4
  6. Korkmaz ME, Gupta MK, Robak G, Moj K, Krolczyk GM, Kuntoğlu M. Development of lattice structure with selective laser melting process: a state of the art on properties, future trends and challenges. J Manuf Process. 2022;81:1040-1063. doi: 10.1016/j.jmapro.2022.07.051
  7. Cong Z, Dejun J, Fanchun L, Yitong X, Yuan Z. Design and simulation of titanium alloy lattice plate for 3D printing. J Shanghai Jiaotong Univ. 2021;55(2):170-178. doi: 10.26226/m.5efe04779b888 de4950e7833
  8. Wang L, Chen J, Yang Y, et al. Convenient design method for personalized bone plate components. Mech Eng Autom. 2022;(1):11-13. doi: 10.1016/j.procir.2019.04.170
  9. Sun P, Zhang Y, Yin P, Liu H, Li B. Topological optimization design method for implicit surface gradient porous structures. J Xi’an Jiaotong Univ. 2022;56 (1):85-95. doi: 10.1007/1-4020-4752-5_56
  10. Wei Z, Li H, Xiong X, Zhou F, Zhou Y, Shaung F. 3D printed personalized plate internal fixation for the treatment of severe tibial plateau fractures. Chin J Bone Jt Inj. 2021;36(10): 1087-1089. doi: 10.21275/v5i4.nov162687
  11. Wang S, Gao K, Xu Z, et al. 3D printing assisted traditional steel plate internal fixation for complex tibial plateau fractures. China Tissue Eng Res. 2022;26(18):2823-2827. doi: 10.18535/jmscr/v8i2.06
  12. Zhang S, Yang C, Qi H, et al. 3D printed simulated surgery combined with customized steel plate fixation for the treatment of femoral shaft fractures caused by sequelae of poliomyelitis. China Tissue Eng Res. 2020;24(12):1875-1880. doi: 10.1016/s020-1383(98)00049-7
  13. Pobloth AM, Checa S, Razi H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med. 2018;10(423):eaam8828. doi: 10.1126/scitranslmed.aam8828
  14. Huri G. Adjustable bone plate: state of art. Turk J Med Sci. 2020;50(10):1723-1727. doi: 10.3906/sag-2002-69
  15. Kunjin H, Xiang Z, Yuxue Z. Custom-designed orthopedic plates using semantic parameters and template. Med Biol Eng Comput. 2019;57(4):765-775. doi: 10.1007/s11517-018-1916-y
  16. Vijayavenkataraman S, Gopinath A, Lu WF. A new design of 3D-printed orthopedic bone plates with auxetic structures to mitigate stress shielding and improve intra-operative bending. Bio-Des Manuf. 2020;3(2):98-108. doi: 10.1007/s42242-020-00066-8 
  17. Liu B, Ma Z, Li J, et al. Experimental study of a 3D printed permanent implantable porous Ta-coated bone plate for fracture fixation. Bioact Mater. 2021;10:269-280. doi: 10.1016/j.bioactmat.2021.09.09
  18. Taniguchi N, Fujibayashi S, Takemoto M, et al. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016;59:690-701. doi: 10.1016/j.msec.2015.10.069
  19. Li F, Li J, Xu G, Liu G, Kou H, Zhou L. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications. J Mech Behav Biomed Mater. 2015;46:104-114. doi: 10.1016/j.jmbm.2015.02.023
  20. Chang B, Song W, Han T, et al. Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater. 2016;311-321. doi: 10.1016/j.actbio.2016.01.022
  21. Liu L, et al. Design and performance study of personalized porous femoral combined scaffold. Sichuan University. 2021. doi: 10.1016/j.mehy.2019.109374
  22. Zhang G, Yang Y, Zhang Z, Song C, Wang A, Yu J. Optimization design of support structure for laser selective melting formed parts. China Laser. 2016;43(12):59-66. doi: 10.32657/10356/151396
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing