AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2706
Cite this article
175
Download
1259
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Challenges and perspectives of liver tissue engineering: From cell therapy to bioprinting

Julio Rodríguez-Fernández1 M. Teresa Donato2,3,4 Gloria Gallego-Ferrer1,5* Laia Tolosa2,5*
Show Less
1 Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
2 Experimental Hepatology Unit, Health Research Institute La Fe (IISLAFE), Valencia, Spain
3 Departament of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat de València, Valencia, Spain
4 Biomedical Research Networking Center on Hepatic and Digestive Diseases (CIBER-EHD), Valencia, Spain
5 Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
IJB 2024, 10(3), 2706 https://doi.org/10.36922/ijb.2706
Submitted: 10 January 2024 | Accepted: 26 February 2024 | Published: 29 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Liver tissue engineering offers a remarkable tool for toxicological screening and an approach to disease modeling, and provides an alternative solution to liver transplantation in treating end-stage liver diseases. As the liver is a highly specialized multicellular organ, distinctive features such as diversity of cell types, extracellular matrix composition, and three-dimensional architecture must be taken into consideration in recapitulating its physiology. Here, we review the current developments in liver tissue engineering approaches, focusing on their application to liver disease modeling and treatment, with special emphasis on bioprinting for high-throughput analysis. We also discuss the challenges encountered and the likely future developments in the area.

Keywords
Liver
Bioprinting
Disease modelling
Hepatotoxicity
Regenerative medicine
Funding
This work was funded by the Institute of Health Carlos III (ISCIII, Plan Estatal de I+D+i 2013-2016) and co-financed by the European Regional Development Fund “A way to achieve Europe” (FEDER) through Grant No. PI21/00223, and by Grants PID2022-136433OB-C21 and C-22 funded by MCIN/AEI/10.13039/501100011033 and Grant No. CNS2022-135425. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Pimpin L, Cortez-Pinto H, Negro F, et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018;69(3):718-735. doi: 10.1016/j.jhep.2018.05.011
  2. Karlsen TH, Sheron N, Zelber-Sagi S, et al. The EASL– Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet. 2022;399(10319):61-116. doi: 10.1016/S0140-6736(21)01701-3
  3. Kaur S, Kidambi S, Ortega-Ribera M, et al. In vitro models for the study of liver biology and diseases: advances and limitations. CMGH. 2023;15(3):559-571. doi: 10.1016/j.jcmgh.2022.11.008
  4. Godoy P, Hewitt NJ, Albrecht U, et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87(8):1315-1530. doi: 10.1007/s00204-013-1078-5
  5. da Silva Morais A, Vieira S, Zhao X, et al. Advanced biomaterials and processing methods for liver regeneration: state‐of‐the‐art and future trends. Adv Healthc Mater. 2020;9(5). doi: 10.1002/adhm.201901435
  6. Ming Z, Tang X, Liu J, Ruan B. Advancements in research on constructing physiological and pathological liver models and their applications utilizing bioprinting technology. Molecules. 2023;28(9):3683. doi: 10.3390/molecules28093683
  7. Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60-66. doi: 10.1126/science.276.5309.60
  8. Kholodenko IV, Yarygin KN. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int. 2017;2017:1-17. doi: 10.1155/2017/8910821
  9. Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med. 2023;71(1):103365. doi: 10.1016/j.retram.2022.103365
  10. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151-171. doi: 10.1016/j.jhep.2018.09.014
  11. Burton R, Henn C, Lavoie D, et al. A rapid evidence review of the effectiveness and cost-effectiveness of alcohol control policies: an English perspective. Lancet. 2017;389(10078):1558-1580. doi: 10.1016/S0140-6736(16)32420-5
  12. Hart CL, Morrison DS, Batty GD, Mitchell RJ, Smith GD. Effect of body mass index and alcohol consumption onliver disease: analysis of data from two prospective cohort studies. BMJ. 2010;340(7747):634. doi: 10.1136/bmj.c1240
  13. Bataller R, Cabezas J, Aller R, et al. Enfermedad hepática por alcohol. Guías de práctica clínica. Documento de consenso auspiciado por la AEEH. Gastroenterol Hepatol. 2019;42(10):657-676. doi: 10.1016/j.gastrohep.2019.09.006
  14. Bhatia SN, Underhill GH, Zaret KS, Fox IJ. Cell and tissue engineering for liver disease. Sci Transl Med. 2014;6(245). doi: 10.1126/scitranslmed.3005975
  15. Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell models and omics techniques for the study of nonalcoholic fatty liver disease: focusing on stem cell-derived cell models. Antioxidants. 2021;11(1):86. doi: 10.3390/antiox11010086
  16. Ströbel S, Kostadinova R, Fiaschetti-Egli K, et al. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep. 2021;11(1):22765. doi: 10.1038/s41598-021-01951-7
  17. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397-411. doi: 10.1038/nrgastro.2017.38 
  18. EASL. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Obes Facts. 2016;9(2):65-90. doi: 10.1159/000443344
  19. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063-2072. doi: 10.1056/NEJMra1503519
  20. Arzumanyan A, Reis HMGPV, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13(2):123-135. doi: 10.1038/nrc3449
  21. Ray G. Management of liver diseases: current perspectives. World J Gastroenterol. 2022;28(40):5818-5826. doi: 10.3748/wjg.v28.i40.5818
  22. Dhanasekaran R, Bandoh S, Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res. 2016;5:879. doi: 10.12688/f1000research.6946.1
  23. Ruff SM, Manne A, Cloyd JM, Dillhoff M, Ejaz A, Pawlik TM. Current landscape of immune checkpoint inhibitor therapy for hepatocellular carcinoma. Curr Oncol. 2023;30(6): 5863-5875. doi: 10.3390/curroncol30060439
  24. Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005;4(6):489-499. doi: 10.1038/nrd1750
  25. Björnsson ES, Gunnarsson BI, Gröndal G, et al. Risk of drug-induced liver injury from tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2015;13(3):602-608. doi: 10.1016/j.cgh.2014.07.062
  26. EASL. EASL Clinical Practice Guidelines: drug-induced liver injury. J Hepatol. 2019;70(6):1222-1261. doi: 10.1016/j.jhep.2019.02.014
  27. Anand SK, Caputo M, Xia Y, et al. Inhibition of MAP4K4 signaling initiates metabolic reprogramming to protect hepatocytes from lipotoxic damage. J Lipid Res. 2022;63(7):100238. doi: 10.1016/j.jlr.2022.100238
  28. Pareja E, Gómez-Lechón MJ, Tolosa L. Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. Ann Transl Med. 2020;8(8):566-566. doi: 10.21037/atm.2020.02.164
  29. Adam R, Karam V, Delvart V, et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J Hepatol. 2012;57(3):675-688. doi: 10.1016/j.jhep.2012.04.015
  30. Dutkowski P, Linecker M, DeOliveira ML, Müllhaupt B, Clavien PA. Challenges to liver transplantation and strategies to improve outcomes. Gastroenterology. 2015;148(2):307-323. doi: 10.1053/j.gastro.2014.08.045
  31. Bizzaro, Russo, Burra. New perspectives in liver transplantation: from regeneration to bioengineering. Bioengineering. 2019;6(3):81. doi: 10.3390/bioengineering6030081
  32. Smets F, Najimi M, Sokal EM. Cell transplantation in the treatment of liver diseases. Pediatr Transplant. 2008;12(1):6-13. doi: 10.1111/j.1399-3046.2007.00788.x
  33. Lysy PA, Najimi M, Stéphenne X, Bourgois A, Smets F, Sokal EM. Liver cell transplantation for Crigler-Najjar syndrome type I: update and perspectives. World J Gastroenterol. 2008;14(22):3464. doi: 10.3748/wjg.14.3464
  34. van de Kerkhove MP, Hoekstra R, Chamuleau RAFM, van Gulik TM. Clinical application of bioartificial liver support systems. Ann Surg. 2004;240(2):216-230. doi: 10.1097/01.sla.0000132986.75257.19
  35. Gebhardt R, Matz-Soja M. Liver zonation: novel aspects of its regulation and its impact on homeostasis. World J Gastroenterol. 2014;20(26):8491. doi: 10.3748/wjg.v20.i26.8491
  36. Panday R, Monckton CP, Khetani SR. The role of liver zonation in physiology, regeneration, and disease. Semin Liver Dis. 2022;42(01):001-016. doi: 10.1055/s-0041-1742279
  37. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol. 2017;27(21):R1147-R1151. doi: 10.1016/j.cub.2017.09.019 
  38. Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: a membrane trafficking machine. J Cell Biol. 2019;218(7):2096-2112. doi: 10.1083/jcb.201903090
  39. Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson NC. Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nat Rev Gastroenterol Hepatol. 2020;17(8):457-472. doi: 10.1038/s41575-020-0304-x
  40. Aizarani N, Saviano A, Sagar, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature. 2019;572(7768):199-204. doi: 10.1038/s41586-019-1373-2
  41. Dianat N, Dubois-Pot-Schneider H, Steichen C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology. 2014;60(2):700-714. doi: 10.1002/hep.27165
  42. Salas-Silva S, Simoni-Nieves A, Chávez-Rodríguez L, Gutiérrez-Ruiz MC, Bucio L, Quiroz LEG. Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol. 2021;26:100530. doi: 10.1016/j.aohep.2021.100530
  43. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE. Kupffer cells in the liver. Compr Physiol. 2013;3(2):785-797. doi: 10.1002/cphy.c120026
  44. Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat Immunol. 2005;6(12):1198-1205. doi: 10.1038/ni1274
  45. Sørensen KK, Simon‐Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol. 2015;5:1751-1774. doi: 10.1002/cphy.c140078
  46. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14(10):996-1006. doi: 10.1038/ni.2691
  47. Ding B Sen, Cao Z, Lis R, et al. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014;505(7481):97-102. doi: 10.1038/nature12681
  48. Halpern KB, Shenhav R, Massalha H, et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol. 2018;36(10):962. doi: 10.1038/nbt.4231
  49. Senoo H. Structure and function of hepatic stellate cells. Med Electron Microsc. 2004;37(1):3-15. doi: 10.1007/s00795-003-0230-3
  50. Sanz-García C, Fernández-Iglesias A, Gracia-Sancho J, Arráez- Aybar LA, Nevzorova YA, Cubero FJ. The space of Disse: the liver hub in health and disease. Livers. 2021;1(1):3-26. doi: 10.3390/livers1010002
  51. Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473-1492. doi: 10.1002/cphy.c120035
  52. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195-4200. doi: 10.1242/jcs.023820
  53. Baiocchini A, Montaldo C, Conigliaro A, et al. Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One. 2016;11(3). doi: 10.1371/journal.pone.0151736
  54. Bedossa P, Paradis V. Liver extracellular matrix in health and disease. J Pathol. 2003;200(4):504-515. doi: 10.1002/path.1397
  55. Allu I, Sahi AK, Koppadi M, Gundu S, Sionkowska A. Decellularization techniques for tissue engineering: towards replicating native extracellular matrix architecture in liver regeneration. J Funct Biomater. 2023;14(10):518. doi: 10.3390/jfb14100518 
  56. Ford AJ, Rajagopalan P. Extracellular matrix remodeling in 3D: implications in tissue homeostasis and disease progression. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(4). doi: 10.1002/wnan.1503
  57. Mejias M, Gallego J, Naranjo-Suarez S, et al. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology. 2020;159(1):273-288. doi: 10.1053/j.gastro.2020.03.008
  58. Arriazu E, Ruiz de Galarreta M, Cubero FJ, et al. Extracellular matrix and liver disease. Antioxid Redox Signal. 2014;21(7):1078-1097. doi: 10.1089/ars.2013.5697
  59. Leroy V, Monier F, Bottari S, et al. Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: comparison with PIIINP and hyaluronic acid. Am J Gastroenterol. 2004;99(2):271-279. doi: 10.1111/j.1572-0241.2004.04055.x
  60. Ramachandran P, Dobie R, Wilson-Kanamori JR, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575(7783):512-518. doi: 10.1038/s41586-019-1631-3
  61. Yuan J, Li X, Yu S. Cancer organoid co-culture model system: novel approach to guide precision medicine. Front Immunol. 2023;13. doi: 10.3389/fimmu.2022.1061388
  62. Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res. 2013;2(1):23-39. doi: 10.1039/C2TX20051A
  63. Gomez-Lechon M, Donato M, Lahoz A, Castell J. Cell lines: a tool for in vitro drug metabolism studies. Curr Drug Metab. 2008;9(1):1-11. doi: 10.2174/138920008783331086
  64. Hewitt NJ, Gómez Lechón MJ, Houston JB, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39(1):159-234. doi: 10.1080/03602530601093489
  65. O´Brien PJ, Chan K, Silber PM. Human and animal hepatocytes in vitro with extrapolation in vivo. Chem Biol Interact. 2004;150(1):97-114. doi: 10.1016/j.cbi.2004.09.003
  66. O´Brien PJ, Irwin W, Diaz D, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580-604. doi: 10.1007/s00204-006-0091-3
  67. Tolosa L, Pareja-Ibars E, Donato MT, et al. Neonatal livers: a source for the isolation of good-performing hepatocytes for cell transplantation. Cell Transplant. 2014;23(10):1229-1242. doi: 10.3727/096368913X669743
  68. Gomez-Lechon M, Donato M, Castell J, Jover R. Human hepatocytes in primary culture: the choice to investigate drug metabolism in man. Curr Drug Metab. 2004;5(5):443-462. doi: 10.2174/1389200043335414
  69. Chowdhary V, Teng K yu, Thakral S, et al. miRNA-122 protects mice and human hepatocytes from acetaminophen toxicity by regulating cytochrome P450 family 1 subfamily A member 2 and family 2 subfamily e member 1 expression. Am J Pathol. 2017;187(12):2758-2774. doi: 10.1016/j.ajpath.2017.08.026
  70. Fox IJ, Chowdhury JR. Hepatocyte transplantation. Am J Transplant. 2004;4:7-13. doi: 10.1111/j.1600-6135.2004.0340.x
  71. Hansel MC, Davila JC, Vosough M, et al. The use of induced pluripotent stem cells for the study and treatment of liver diseases. Curr Protoc Toxicol. 2016;67(1). doi: 10.1002/0471140856.tx1413s67
  72. Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr Res. 2018;83(1- 2):232-240. doi: 10.1038/pr.2017.284 
  73. Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT. Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol. 2014;10(11):1553-1568. doi: 10.1517/17425255.2014.967680
  74. Donato MT, Tolosa L, Gómez-Lechón MJ. Culture and functional characterization of human hepatoma HepG2 cells. Methods Mol Biol. 2015;1250:77-93. doi: 10.1007/978-1-4939-2074-7_5
  75. Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol. 2015;62(1):S157-S169. doi: 10.1016/j.jhep.2015.02.040
  76. Donato MT, Tolosa L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation. 2019;106(January):15-22. doi: 10.1016/j.diff.2019.02.004
  77. Hannan NRF, Segeritz CP, Touboul T, Vallier L. Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 2013;8(2):430-437. doi: 10.1038/nprot.2012.153
  78. Takayama K, Morisaki Y, Kuno S, et al. Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes. Proc Natl Acad Sci. 2014;111(47): 16772-16777. doi: 10.1073/pnas.1413481111
  79. Bell CC, Dankers ACA, Lauschke VM, et al. Comparison of hepatic 2D sandwich cultures and 3d spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci. 2018;162(2):655-666. doi: 10.1093/toxsci/kfx289
  80. Lee JY, Han HJ, Lee SJ, et al. Use of 3D human liver organoids to predict drug-induced phospholipidosis. Int J Mol Sci. 2020;21(8):2982. doi: 10.3390/ijms21082982
  81. Berger M, Neth O, Ilmer M, et al. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol. 2014;60(5):985-994. doi: 10.1016/j.jhep.2013.12.024
  82. Davidson MD, Pickrell J, Khetani SR. Physiologically inspired culture medium prolongs the lifetime and insulin sensitivity of human hepatocytes in micropatterned co-cultures. Toxicology. 2021;449. doi: 10.1016/j.tox.2020.152662
  83. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481-484. doi: 10.1038/nature12271
  84. Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater. 2021;8(6). doi: 10.1093/rb/rbab060
  85. Annabi N, Tamayol A, Uquillas JA, et al. 25th anniversary article: rational design and applications of hydrogels inregenerative medicine. Adv Mater. 2014;26(1):85-124. doi: 10.1002/adma.201303233
  86. Jiang J, Tan Y, Liu A, et al. Tissue engineered artificial liver model based on viscoelastic hyaluronan-collagen hydrogel and the effect of EGCG intervention on ALD. Colloids Surf B Biointerfaces. 2021;206. doi: 10.1016/j.colsurfb.2021.111980
  87. Tong X, Zhao F, Ren Y, Zhang Y, Cui Y, Wang Q. Injectable hydrogels based on glycyrrhizin, alginate, and calcium for three‐dimensional cell culture in liver tissue engineering. J Biomed Mater Res A. 2018;106(12):3292-3302. doi: 10.1002/jbm.a.36528
  88. Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use. J Mater Sci Mater Med. 2010;21(6):1899-1911. doi: 10.1007/s10856-010-4035-3
  89. Tan H, Marra KG. Injectable, biodegradable hydrogels for tissue engineering applications. Materials. 2010;3(3): 1746-1767. doi: 10.3390/ma3031746
  90. Rodriguez-Fernandez J, Garcia-Legler E, Villanueva- Badenas E, et al. Primary human hepatocytes-laden scaffolds for the treatment of acute liver failure. Biomater Adv. 2023;153:213576. doi: 10.1016/j.bioadv.2023.213576 
  91. Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020;7. doi: 10.3389/fmats.2020.00076
  92. Raghuwanshi VS, Garnier G. Characterisation of hydrogels: linking the nano to the microscale. Adv Colloid Interface Sci. 2019;274:102044. doi: 10.1016/j.cis.2019.102044
  93. Richbourg NR, Peppas NA. The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci. 2020;105:101243. doi: 10.1016/j.progpolymsci.2020.101243
  94. Willemse J, van Tienderen G, van Hengel E, et al. Hydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids. Biomaterials. 2022;284:121473. doi: 10.1016/j.biomaterials.2022.121473
  95. Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. Hydrogels for liver tissue engineering. Bioengineering. 2019;6(3):59. doi: 10.3390/bioengineering6030059
  96. Desimone MF, Hélary C, Rietveld IB, et al. Silica-collagen bionanocomposites as three-dimensional scaffolds for fibroblast immobilization. Acta Biomater. 2010;6(10): 3998-4004. doi: 10.1016/j.actbio.2010.05.014
  97. Lee JW, Choi YJ, Yong WJ, et al. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8(1):015007. doi: 10.1088/1758-5090/8/1/015007
  98. Cui J, Wang H, Shi Q, Sun T, Huang Q, Fukuda T. Multicellular co-culture in three-dimensional gelatin methacryloyl hydrogels for liver tissue engineering. Molecules. 2019;24(9). doi: 10.3390/molecules24091762
  99. An S, Choi S, Min S, Cho SW. Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications. Biotechnol Bioprocess Eng. 2021;26(4):503-516. doi: 10.1007/s12257-020-0343-8
  100. Christoffersson J, Aronsson C, Jury M, Selegård R, Aili D, Mandenius CF. Fabrication of modular hyaluronan- PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication. 2019;11(1). doi: 10.1088/1758-5090/aaf657
  101. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes. Biomaterials. 2010;31(13):3596-3603. doi: 10.1016/j.biomaterials.2010.01.068
  102. Chen S, Liu A, Wu C, et al. Static–dynamic profited viscoelastic hydrogels for motor-clutch-regulated neurogenesis. ACS Appl Mater Interfaces. 2021;13(21):24463-24476. doi: 10.1021/acsami.1c03821
  103. Malinen MM, Kanninen LK, Corlu A, et al. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials. 2014;35(19):5110-5121. doi: 10.1016/j.biomaterials.2014.03.020
  104. Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN. Degradable hydrogels derived from PEG‐diacrylamide for hepatic tissue engineering. J Biomed Mater Res A. 2015;103(10):3331-3338. doi: 10.1002/jbm.a.35478
  105. Underhill GH, Chen AA, Albrecht DR, Bhatia SN. Assessment of hepatocellular function within PEG hydrogels. Biomaterials. 2007;28(2):256-270. doi: 10.1016/j.biomaterials.2006.08.043
  106. Lin TY, Ki CS, Lin CC. Manipulating hepatocellular carcinoma cell fate in orthogonally cross-linked hydrogels. Biomaterials. 2014;35(25):6898-6906. doi: 10.1016/j.biomaterials.2014.04.118
  107. Kim D, Kim M, Lee J, Jang J. Review on multicomponent hydrogel bioinks based on natural biomaterials for bioprinting 3D liver tissues. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.764682
  108. Kim MK, Jeong W, Kang HW. Liver dECM–gelatin composite bioink for precise 3D printing of highly functional liver tissues. J Funct Biomater. 2023;14(8). doi: 10.3390/jfb14080417 
  109. Liu H, Gong Y, Zhang K, et al. Recent advances in decellularized matrix-derived materials for bioink and 3D bioprinting. Gels. 2023;9(3). doi: 10.3390/gels9030195
  110. Monteiro MV, Henriques-Pereira M, Neves BM, Duarte ID, Gaspar VM, Mano JF. Photo-compartmentalized decellularized matrix-hyaluronan hybrid units for pancreatic tumor-stroma modeling. Adv Funct Mater. 2023;34(6):2305473. doi: 10.1002/adfm.202305473
  111. Agarwal T, Subramanian B, Maiti TK. Liver tissue engineering: challenges and opportunities. ACS Biomater Sci Eng. 2019;5(9):4167-4182. doi: 10.1021/acsbiomaterials.9b00745
  112. Huang D (Danielle), Gibeley SB, Xu C, et al. Engineering liver microtissues for disease modeling and regenerative medicine. Adv Funct Mater. 2020;30(44). doi: 10.1002/adfm.201909553
  113. Trujillo S, Dobre O, Dalby MJ. Salmeron-Sanchez M. Mechanotransduction and Growth Factor Signaling in Hydrogel-Based Microenvironments. Reis RL, eds. In Encyclopedia of Tissue Engineering and Regenerative Medicine. Oxford: Academic Press. 2019:87-101. doi: 10.1016/B978-0-12-801238-3.11141-9
  114. Cantini M, Donnelly H, Dalby MJ, Salmeron‐Sanchez M. The plot thickens: the emerging role of matrix viscosity in cell mechanotransduction. Adv Healthc Mater. 2020;9(8). doi: 10.1002/adhm.201901259
  115. Rizwan M, Ling C, Guo C, et al. Viscoelastic notch signaling hydrogel induces liver bile duct organoid growth and morphogenesis. Adv Healthc Mater. 2022;11(23). doi: 10.1002/adhm.202200880
  116. Bruns H, Kneser U, Holzhüter S, et al. Injectable liver: a novel approach using fibrin gel as a matrix for culture and intrahepatic transplantation of hepatocytes. Tissue Eng. 2005;11(11-12):1718-1726. doi: 10.1089/ten.2005.11.1718
  117. Le Guilcher C, Merlen G, Dellaquila A, et al. Engineered human liver based on pullulan-dextran hydrogel promotes mice survival after liver failure. Mater Today Bio. 2023;19:100554. doi: 10.1016/j.mtbio.2023.100554
  118. Meng D, Lei X, Li Y, Kong Y, Huang D, Zhang G. Three dimensional polyvinyl alcohol scaffolds modified with collagen for HepG2 cell culture. J Biomater Appl. 2020; 35(4-5):459-470. doi: 10.1177/0885328220933505
  119. He XL, Ge LL, Liu ZL, et al. Glycyrrhetinic acid-based thermoresponsive hydrogel as a synthetic extracellular matrix for hepatocyte culture and recovery. Ind Eng Chem Res. 2014;53(26):10618-10628. doi: 10.1021/ie404417u
  120. Ye S, Boeter JWB, Mihajlovic M, et al. A chemically defined hydrogel for human liver organoid culture. Adv Funct Mater. 2020;30(48). doi: 10.1002/adfm.202000893
  121. Ma L, Wu Y, Li Y, et al. Current advances on 3D‐bioprinted liver tissue models. Adv Healthc Mater. 2020;9(24). doi: 10.1002/adhm.202001517
  122. Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G. Research progress in enzymatically cross-linked hydrogels as injectable systems for bioprinting and tissue engineering. Gels. 2023;9(3):230. doi: 10.3390/gels9030230
  123. Naghieh S, Chen X. Printability–a key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
  124. Li W, Liu Z, Tang F, et al. Application of 3D bioprinting in liver diseases. Micromachines. 2023;14(8). doi: 10.3390/mi14081648
  125. Wang Q, Liu J, Yin W, et al. Microscale tissue engineering of liver lobule models: advancements and applications. Front Bioeng Biotechnol. 2023;11. doi: 10.3389/fbioe.2023.1303053
  126. Xie M, Su J, Zhou S, Li J, Zhang K. Application of hydrogels as three-dimensional bioprinting ink for tissue engineering. Gels. 2023;9(2):88. doi: 10.3390/gels9020088 
  127. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G, Russom A. 3D bioprinting of multi-material decellularized liver matrix hydrogel at physiological temperatures. Biosensors. 2022;12(7):521. doi: 10.3390/bios12070521
  128. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479. doi: 10.1016/j.apmt.2019.100479
  129. Gori M, Giannitelli SM, Torre M, et al. Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: an effective tool to assess drug-induced hepatotoxic response. Adv Healthc Mater. 2020; 9(21). doi: 10.1002/adhm.202001163
  130. Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2018;11(1):015003. doi: 10.1088/1758-5090/aae543
  131. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue model using humaninduced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation. Int J Bioprint. 2022;8(3):581. doi: 10.18063/ijb.v8i3.581
  132. Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 3D-bioprinted HepaRG cultures as a model for testing long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7: 1578-1587. doi: 10.1016/j.toxrep.2020.11.003
  133. Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8(1). doi: 10.1088/1758-5090/8/1/014101
  134. Janani G, Priya S, Dey S, Mandal BB. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications. ACS Appl Mater Interfaces. 2022;14(8):10167-10186. doi: 10.1021/acsami.2c00312
  135. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416. doi: 10.1016/j.biomaterials.2020.120416
  136. Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310-321. doi: 10.1016/j.biomaterials.2018.09.026
  137. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials. 2021;269:120611. doi: 10.1016/j.biomaterials.2020.120611
  138. Kim D, Kim M, Lee J, Jang J. Review on multicomponent hydrogel bioinks based on natural biomaterials for bioprinting 3D liver tissues. Front Bioeng Biotechnol. 2022;10. doi: 10.3389/fbioe.2022.764682
  139. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue model using human-induced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation. Int J Bioprint. 2022;8(3):176-190. doi: 10.18063/ijb.v8i3.581
  140. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse EL. Editor’s highlight: modeling compound-induced fibrogenesis in vitro using three-dimensional bioprinted human liver tissues. Toxicol Sci. 2016;154(2):354-367. doi: 10.1093/toxsci/kfw169
  141. Norona LM, Nguyen DG, Gerber DA, Presnell SC, Mosedale M, Watkins PB. Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis. PLoS One. 2019;14(1):e0208958. doi: 10.1371/journal.pone.0208958
  142. Maharjan S, Bonilla D, Sindurakar P, et al. 3D human nonalcoholic hepatic steatosis and fibrosis models. Biodes Manuf. 2021;4(2):157-170. doi: 10.1007/s42242-020-00121-4
  143. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication. 2020;12(4). doi: 10.1088/1758-5090/aba0c3 
  144. Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep. 2017;10:186-191. doi: 10.1016/j.bbrep.2017.04.004
  145. Dhawan A, Mitry RR, Hughes RD, et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation. 2004;78(12):1812-1814. doi: 10.1097/01.TP.0000146386.77076.47
  146. Meyburg J, Das AM, Hoerster F, et al. One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation. 2009;87(5):636-641. doi: 10.1097/TP.0b013e318199936a
  147. Anderson TN, Zarrinpar A. Hepatocyte transplantation: past efforts, current technology, and future expansion of therapeutic potential. J Surg Res. 2018;226:48-55. doi: 10.1016/j.jss.2018.01.031
  148. Mazza G, Rombouts K, Rennie Hall A, et al. Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep. 2015;5(1):13079. doi: 10.1038/srep13079
  149. Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds for liver tissue engineering. Expert Rev Med Devices. 2006;3(1):21-27. doi: 10.1586/17434440.3.1.21
  150. Jitraruch S, Dhawan A, Hughes RD, et al. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One. 2014;9(12):1- 23. doi: 10.1371/journal.pone.0113609
  151. Parveen N, Khan AA, Baskar S, et al. Intraperitoneal transplantation of hepatocytes embedded in thermoreversible gelation polymer (Mebiol Gel) in acute liver failure rat model. J Hepatol. 2008;48:S71. doi: 10.1016/S0168-8278(08)60166-X
  152. Chiang CH, Wu WW, Li HY, et al. Enhanced antioxidant capacity of dental pulp-derived iPSC-differentiated hepatocytes and liver regeneration by injectable HGF-releasing hydrogel in fulminant hepatic failure. Cell Transplant. 2015;24(3):541-559. doi: 10.3727/096368915X686986
  153. Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson’s disease model rat. J Biochem. 2010;148(3):281-288. doi: 10.1093/jb/mvq063
  154. Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther. 2021;18:88-96. doi: 10.1016/j.reth.2021.04.002
  155. Vishwakarma SK, Bardia A, Lakkireddy C, et al. Intraperitoneal transplantation of bioengineered humanized liver grafts supports failing liver in acute condition. Mater Sci Eng C. 2019;98:861-873. doi: 10.1016/j.msec.2019.01.045
  156. Higashi H, Yagi H, Kuroda K, et al. Transplantation of bioengineered liver capable of extended function in a preclinical liver failure model. Am J Transplant. 2022;22(3):731-744. doi: 10.1111/ajt.16928
  157. Tai BCU, Du C, Gao S, Wan ACA, Ying JY. The use of a polyelectrolyte fibrous scaffold to deliver differentiated hMSCs to the liver. Biomaterials. 2010;31(1):48-57. doi: 10.1016/j.biomaterials.2009.09.022
  158. Lin J, Meng L, Yao Z, et al. Use an alginate scaffold-bone marrow stromal cell (BMSC) complex for the treatment of acute liver failure in rats. Int J Clin Exp Med. 2015;8(8):12593- 12600.
  159. Zhang LK, Wang H, Yang R, et al. Bone marrow stem cells combined with polycaprolactone-polylactic acid-polypropylene amine scaffolds for the treatment of acute liver failure. Chem Eng J. 2019;360:1564-1576. doi: 10.1016/j.cej.2018.10.230
  160. Dhawan A, Chaijitraruch N, Fitzpatrick E, et al. Alginate microencapsulated human hepatocytes for the treatment of acute liver failure in children. J Hepatol. 2020;72(5): 877-884. doi: 10.1016/j.jhep.2019.12.002 
  161. McKiernan PJ, Squires RH. Bridging transplantation with beads in paediatric acute liver failure. Nat Rev Gastroenterol Hepatol. 2020;17(4):197-198. doi: 10.1038/s41575-020-0281-0
  162. Zhong C, Xie HY, Zhou L, Xu X, Zheng SS. Human hepatocytes loaded in 3D bioprinting generate mini-liver. Hepatobiliary Pancreat Dis Int. 2016;15(5):512-518. doi: 10.1016/S1499-3872(16)60119-4
  163. Zhao Y, Xu B, Liang W, et al. Multisite injection of bioengineered hepatic units from collagen hydrogel and neonatal liver cells in parenchyma improves liver cirrhosis. Tissue Eng Part A. 2019;25(15-16):1167-1174. doi: 10.1089/ten.tea.2018.0107
  164. Shagidulin M, Onishchenko N, Sevastianov V, et al. Experimental correction and treatment of chronic liver failure using implantable cell-engineering constructs of the auxiliary liver based on a bioactive heterogeneous biopolymer hydrogel. Gels. 2023;9(6):456. doi: 10.3390/gels9060456
  165. Nagamoto Y, Takayama K, Ohashi K, et al. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J Hepatol. 2016;64(5):1068- 1075. doi: 10.1016/j.jhep.2016.01.004
  166. Baimakhanov Z, Yamanouchi K, Sakai Y, et al. Efficacy of multilayered hepatocyte sheet transplantation for radiation‑induced liver damage and partial hepatectomy in a rat model. Cell Transplant. 2016;25(3):549-558. doi: 10.3727/096368915X688669
  167. Demetriou AA, Levenson SM, Novikoff PM, et al. Survival, organization, and function of microcarrier-attached hepatocytes transplanted in rats. Proc Natl Acad Sci U S A. 1986; 83:7475-7479. doi: 10.1073/pnas.83.19.7475
  168. Jiang WC, Cheng YH, Yen MH, Chang Y, Yang VW, Lee OK. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials. 2014;35(11):3607-3617. doi: 10.1016/j.biomaterials.2014.01.024
  169. Bao J, Wu Q, Sun J, et al. Hemocompatibility improvement of perfusion-decellularized clinical-scale liver scaffold through heparin immobilization. Sci Rep. 2015;5(1):10756. doi: 10.1038/srep10756
  170. Sarkis R, Honiger J, Chafai N, et al. Semiautomatic macroencapsulation of fresh or cryopreserved porcine hepatocytes maintain their ability for treatment of acute liver failure. Cell Transplant. 2001;10(7):601-607. doi: 10.3727/000000001783986314
  171. Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685-3726. doi: 10.1016/j.apsb.2021.11.013
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing